864 resultados para Navigating robots
Resumo:
Several studies have shown that people with disabilities benefit substantially from access to a means of independent mobility and assistive technology. Researchers are using technology originally developed for mobile robots to create easier to use wheelchairs. With this kind of technology people with disabilities can gain a degree of independence in performing daily life activities. In this work a computer vision system is presented, able to drive a wheelchair with a minimum number of finger commands. The user hand is detected and segmented with the use of a kinect camera, and fingertips are extracted from depth information, and used as wheelchair commands.
Resumo:
RoboCup was created in 1996 by a group of Japanese, American, and European Artificial Intelligence and Robotics researchers with a formidable, visionary long-term challenge: “By 2050 a team of robot soccer players will beat the human World Cup champion team.” At that time, in the mid 90s, when there were very few effective mobile robots and the Honda P2 humanoid robot was presented to a stunning public for the first time also in 1996, the RoboCup challenge, set as an adversarial game between teams of autonomous robots, was fascinating and exciting. RoboCup enthusiastically and concretely introduced three robot soccer leagues, namely “Simulation,” “Small-Size,” and “Middle-Size,” as we explain below, and organized its first competitions at IJCAI’97 in Nagoya with a surprising number of 100 participants [RC97]. It was the beginning of what became a continously growing research community. RoboCup established itself as a structured organization (the RoboCup Federation www.RoboCup.org). RoboCup fosters annual competition events, where the scientific challenges faced by the researchers are addressed in a setting that is attractive also to the general public. and the RoboCup events are the ones most popular and attended in the research fields of AI and Robotics.RoboCup further includes a technical symposium with contributions relevant to the RoboCup competitions and beyond to the general AI and robotics.
Resumo:
Hand gesture recognition for human computer interaction, being a natural way of human computer interaction, is an area of active research in computer vision and machine learning. This is an area with many different possible applications, giving users a simpler and more natural way to communicate with robots/systems interfaces, without the need for extra devices. So, the primary goal of gesture recognition research is to create systems, which can identify specific human gestures and use them to convey information or for device control. For that, vision-based hand gesture interfaces require fast and extremely robust hand detection, and gesture recognition in real time. In this study we try to identify hand features that, isolated, respond better in various situations in human-computer interaction. The extracted features are used to train a set of classifiers with the help of RapidMiner in order to find the best learner. A dataset with our own gesture vocabulary consisted of 10 gestures, recorded from 20 users was created for later processing. Experimental results show that the radial signature and the centroid distance are the features that when used separately obtain better results, with an accuracy of 91% and 90,1% respectively obtained with a Neural Network classifier. These to methods have also the advantage of being simple in terms of computational complexity, which make them good candidates for real-time hand gesture recognition.
Resumo:
"Lecture notes in computational vision and biomechanics series, ISSN 2212-9391, vol. 19"
Resumo:
Tese de Doutoramento Programa Doutoral em Engenharia Electrónica e Computadores
Resumo:
Series: "Advances in intelligent systems and computing , ISSN 2194-5357, vol. 417"
Resumo:
There is currently an increasing demand for robots able to acquire the sequential organization of tasks from social learning interactions with ordinary people. Interactive learning-by-demonstration and communication is a promising research topic in current robotics research. However, the efficient acquisition of generalized task representations that allow the robot to adapt to different users and contexts is a major challenge. In this paper, we present a dynamic neural field (DNF) model that is inspired by the hypothesis that the nervous system uses the off-line re-activation of initial memory traces to incrementally incorporate new information into structured knowledge. To achieve this, the model combines fast activation-based learning to robustly represent sequential information from single task demonstrations with slower, weight-based learning during internal simulations to establish longer-term associations between neural populations representing individual subtasks. The efficiency of the learning process is tested in an assembly paradigm in which the humanoid robot ARoS learns to construct a toy vehicle from its parts. User demonstrations with different serial orders together with the correction of initial prediction errors allow the robot to acquire generalized task knowledge about possible serial orders and the longer term dependencies between subgoals in very few social learning interactions. This success is shown in a joint action scenario in which ARoS uses the newly acquired assembly plan to construct the toy together with a human partner.
Resumo:
The research of stereotactic apparatus to guide surgical devices began in 1908, yet a major part of today's stereotactic neurosurgeries still rely on stereotactic frames developed almost half a century ago. Robots excel at handling spatial information, and are, thus, obvious candidates in the guidance of instrumentation along precisely planned trajectories. In this review, we introduce the concept of stereotaxy and describe a standard stereotactic neurosurgery. Neurosurgeons' expectations and demands regarding the role of robots as assistive tools are also addressed. We list the most successful robotic systems developed specifically for or capable of executing stereotactic neurosurgery. A critical review is presented for each robotic system, emphasizing the differences between them and detailing positive features and drawbacks. An analysis of the listed robotic system features is also undertaken, in the context of robotic application in stereotactic neurosurgery. Finally, we discuss the current perspective, and future directions of a robotic technology in this field. All robotic systems follow a very similar and structured workflow despite the technical differences that set them apart. No system unequivocally stands out as an absolute best. The trend of technological progress is pointing toward the development of miniaturized cost-effective solutions with more intuitive interfaces.
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médica)
Resumo:
Tese de Doutoramento em Engenharia de Eletrónica e de Computadores
Resumo:
Model finders are very popular for exploring scenarios, helping users validate specifications by navigating through conforming model instances. To be practical, the semantics of such scenario exploration operations should be formally defined and, ideally, controlled by the users, so that they are able to quickly reach interesting scenarios. This paper explores the landscape of scenario exploration operations, by formalizing them with a relational model finder. Several scenario exploration operations provided by existing tools are formalized, and new ones are proposed, namely to allow the user to easily explore very similar (or different) scenarios, by attaching preferences to model elements. As a proof-of-concept, such operations were implemented in the popular Alloy Analyzer, further increasing its usefulness for (user-guided) scenario exploration.
Resumo:
This paper intends to present and reflect upon some of the findings emerging from a research project entitled “Navigating with ‘Magalhães’: Study on the Impact of Digital Media on Schoolchildren” that was conducted at the Communication and Society Research Centre at the University of Minho, Braga, Portugal. The project focused on the politics of the governmental programme “One Laptop per Child” part of the Portuguese Technological Plan for Education, and the uses of the “Magalhães” computer, and other media, by children aged 8-10 years. This paper analyses the impact of this particular public policy on digital literacy of young children based mostly on the perspectives of parents and their modes of mediation. It also debates parents’ and children’s perspectives on parental rules on computer and Internet usage. It ends by concluding that the impact of this programme occurred mainly at the level of access rather than the social and educational uses and practices. It also highlights the importance of family in the way children access and use ICT.
Resumo:
Em 2008, o Governo português anunciou a iniciativa ‘e.escolinha’ que contemplou a distribuição de computadores ‘Magalhães’ aos alunos do 1º ciclo do ensino básico, durante três anos letivos consecutivos. Atualmente suspenso, o programa foi bandeira do XVII Governo Constitucional, liderado por José Sócrates, mas alvo de controvérsias por parte da oposição política e da comunidade escolar, sobretudo pela aparente tónica no acesso à tecnologia em vez de uma maior preocupação com a formação e as práticas pedagógicas. Ao abrigo do Plano Tecnológico da Educação, o ‘e.escolinha’ inseria-se numa política mais ampla para o desenvolvimento de uma economia competitiva e dinâmica, através das metas estabelecidas pela União Europeia na Estratégia de Lisboa 2000. A iniciativa foi apresentada ao país com objetivos ambiciosos, no que diz respeito às esperadas mudanças ao nível das práticas pedagógicas dos professores, do processo de aprendizagem das crianças e do sucesso escolar em geral. Porém, a face mais visível da política, embora possa compreender outros matizes, poderá ter ficado reduzida à questão do acesso, apostando pouco nas outras dimensões da literacia digital. Com base em entrevistas realizadas a atores-chave envolvidos no processo de conceção e implementação do ‘e.escolinha’, e nos documentos oficiais que enquadram o programa, o presente artigo pretende dar a conhecer a forma como decisores políticos e empresas enunciam e avaliam os objetivos desta iniciativa. Pretende-se, em particular, conhecer se partilham a ideia de uma deriva tecnológica desta medida governamental ou se entreveem, na mesma, objetivos de literacia digital. Este trabalho decorre do projeto de investigação “Navegando com o Magalhães: Estudo sobre o Impacto dos Media Digitais nas Crianças”, em curso no Centro de Estudos de Comunicação e Sociedade da Universidade do Minho, financiado pela Fundação para a Ciência e Tecnologia ((PTDC/CCI-COM/101381/2008) ) e co-financiado pelo FEDER (COMPETE: FCOMP-01-0124-FEDER-009056).
Resumo:
This book was produced in the scope of a research project entitled “Navigating with ‘Magalhães’: Study on the Impact of Digital Media in Schoolchildren”. This study was conducted between May 2010 and May 2013 at the Communication and Society Research Centre, University of Minho, Portugal and it was funded by the Portuguese Foundation for Science and Technology (PTDC/CCI-COM/101381/2008).
Resumo:
This book was produced in the scope of a research project entitled “Navigating with ‘Magalhães’: Study on the Impact of Digital Media in Schoolchildren”. This study was conducted between May 2010 and May 2013 at the Communication and Society Research Centre, University of Minho, Portugal and it was funded by the Portuguese Foundation for Science and Technology (PTDC/CCI-COM/101381/2008). As we shall explain in more detail later in this book, the main objective of that research project was to analyse the impact of the Portuguese government programme named ´e-escolinha´ launched in 2008 within the Technological Plan for Education. This Plan responds to the principles of the Lisbon Strategy signed in 2000 and rereleased in the Spring European Council of 2005.