940 resultados para Multi- Choice mixed integer goal programming
Resumo:
Optical networks based on passive-star couplers and employing WDM have been proposed for deployment in local and metropolitan areas. These networks suffer from splitting, coupling, and attenuation losses. Since there is an upper bound on transmitter power and a lower bound on receiver sensitivity, optical amplifiers are usually required to compensate for the power losses mentioned above. Due to the high cost of amplifiers, it is desirable to minimize their total number in the network. However, an optical amplifier has constraints on the maximum gain and the maximum output power it can supply; thus, optical amplifier placement becomes a challenging problem. In fact, the general problem of minimizing the total amplifier count is a mixed-integer nonlinear problem. Previous studies have attacked the amplifier-placement problem by adding the “artificial” constraint that all wavelengths, which are present at a particular point in a fiber, be at the same power level. This constraint simplifies the problem into a solvable mixed integer linear program. Unfortunately, this artificial constraint can miss feasible solutions that have a lower amplifier count but do not have the equally powered wavelengths constraint. In this paper, we present a method to solve the minimum amplifier- placement problem, while avoiding the equally powered wavelength constraint. We demonstrate that, by allowing signals to operate at different power levels, our method can reduce the number of amplifiers required.
Resumo:
This paper addresses the problem of survivable lightpath provisioning in wavelength-division-multiplexing (WDM) mesh networks, taking into consideration optical-layer protection and some realistic optical signal quality constraints. The investigated networks use sparsely placed optical–electrical–optical (O/E/O) modules for regeneration and wavelength conversion. Given a fixed network topology with a number of sparsely placed O/E/O modules and a set of connection requests, a pair of link-disjoint lightpaths is established for each connection. Due to physical impairments and wavelength continuity, both the working and protection lightpaths need to be regenerated at some intermediate nodes to overcome signal quality degradation and wavelength contention. In the present paper, resource-efficient provisioning solutions are achieved with the objective of maximizing resource sharing. The authors propose a resource-sharing scheme that supports three kinds of resource-sharing scenarios, including a conventional wavelength-link sharing scenario, which shares wavelength links between protection lightpaths, and two new scenarios, which share O/E/O modules between protection lightpaths and between working and protection lightpaths. An integer linear programming (ILP)-based solution approach is used to find optimal solutions. The authors also propose a local optimization heuristic approach and a tabu search heuristic approach to solve this problem for real-world, large mesh networks. Numerical results show that our solution approaches work well under a variety of network settings and achieves a high level of resource-sharing rates (over 60% for O/E/O modules and over 30% for wavelength links), which translate into great savings in network costs.
Resumo:
The emergence of wavelength-division multiplexing (WDM) technology provides the capability for increasing the bandwidth of synchronous optical network (SONET) rings by grooming low-speed traffic streams onto different high-speed wavelength channels. Since the cost of SONET add–drop multiplexers (SADM) at each node dominates the total cost of these networks, how to assign the wavelength, groom the traffic, and bypass the traffic through the intermediate nodes has received a lot of attention from researchers recently. Moreover, the traffic pattern of the optical network changes from time to time. How to develop dynamic reconfiguration algorithms for traffic grooming is an important issue. In this paper, two cases (best fit and full fit) for handling reconfigurable SONET over WDM networks are proposed. For each approach, an integer linear programming model and heuristic algorithms (TS-1 and TS-2, based on the tabu search method) are given. The results demonstrate that the TS-1 algorithm can yield better solutions but has a greater running time than the greedy algorithm for the best fit case. For the full fit case, the tabu search heuristic yields competitive results compared with an earlier simulated annealing based method and it is more stable for the dynamic case.
Resumo:
Survivable traffic grooming (STG) is a promising approach to provide reliable and resource-efficient multigranularity connection services in wavelength-division-multiplexing (WDM) optical networks. In this paper, we study the STG problem in WDM mesh optical networks employing path protection at the connection level. Both dedicated-protection and shared-protection schemes are considered. Given network resources, the objective of the STG problem is to maximize network throughput. To enable survivability under various kinds of single failures, such as fiber cut and duct cut, we consider the general shared-risklink- group (SRLG) diverse routing constraints. We first resort to the integer-linear-programming (ILP) approach to obtain optimal solutions. To address its high computational complexity, we then propose three efficient heuristics, namely separated survivable grooming algorithm (SSGA), integrated survivable grooming algorithm (ISGA), and tabu-search survivable grooming algorithm (TSGA). While SSGA and ISGA correspond to an overlay network model and a peer network model, respectively, TSGA further improves the grooming results from SSGA and ISGA by incorporating the effective tabu-search (TS) method. Numerical results show that the heuristics achieve comparable solutions to the ILP approach, which uses significantly longer running times than the heuristics.
Resumo:
Routing and wavelength assignment (RWA) is an important problem that arises in wavelength division multiplexed (WDM) optical networks. Previous studies have solved many variations of this problem under the assumption of perfect conditions regarding the power of a signal. In this paper, we investigate this problem while allowing for degradation of routed signals by components such as taps, multiplexers, and fiber links. We assume that optical amplifiers are preplaced. We investigate the problem of routing the maximum number of connections while maintaining proper power levels. The problem is formulated as a mixed-integer nonlinear program and two-phase hybrid solution approaches employing two different heuristics are developed
Resumo:
Network survivability is one of the most important issues in the design of optical WDM networks. In this work we study the problem of survivable routing of a virtual topology on a physical topology with Shared Risk Link Groups (SRLG). The survivable virtual topology routing problem against single-link failures in the physical topology is proved to be NP-complete in [1]. We prove that survivable virtual topology routing problem against SRLG/node failures is also NP-complete. We present an improved integer linear programming (ILP) formulation (in comparison to [1]) for computing the survivable routing under SRLG/node failures. Using an ILP solver, we computed the survivable virtual topology routing against link and SRLG failures for small and medium sized networks efficiently. As even our improved ILP formulation becomes intractable for large networks, we present a congestion-based heuristic and a tabu search heuristic (which uses the congestion-based heuristic solution as the initial solution) for computing survivable routing of a virtual topology. Our experimental results show that tabu search heuristic coupled with the congestion based heuristic (used as initial solution) provides fast and near-optimal solutions.
Resumo:
Survivable traffic grooming (STG) is a promising approach to provide reliable and resource-efficient multigranularity connection services in wavelength division multiplexing (WDM) optical networks. In this paper, we study the STG problem in WDM mesh optical networks employing path protection at the connection level. Both dedicated protection and shared protection schemes are considered. Given the network resources, the objective of the STG problem is to maximize network throughput. To enable survivability under various kinds of single failures such as fiber cut and duct cut, we consider the general shared risk link group (SRLG) diverse routing constraints. We first resort to the integer linear programming (ILP) approach to obtain optimal solutions. To address its high computational complexity, we then propose three efficient heuristics, namely separated survivable grooming algorithm (SSGA), integrated survivable grooming algorithm (ISGA) and tabu search survivable grooming algorithm (TSGA). While SSGA and ISGA correspond to an overlay network model and a peer network model respectively, TSGA further improves the grooming results from SSGA and ISGA by incorporating the effective tabu search method. Numerical results show that the heuristics achieve comparable solutions to the ILP approach, which uses significantly longer running times than the heuristics.
Resumo:
Objectives: Over the last years, it is known that in some cases metal devices for biomedical applications present some disadvantages suggesting absorbable materials (natural or synthetic) as an alternative of choice. Here, our goal was to evaluate the biological response of a xenogenic pin, derived from bovine cortical bone, intraosseously implanted in the femur of rats. Material and methods: After 10, 14, 30 and 60 days from implantation, the animals (n = 5/period) were killed and the femurs carefully collected and dissected out under histological demands. For identifying the osteoclastogenesis level at 60 days, we performed the immunohistochemisty approach using antibody against RANKL. Results: Interestingly, our results showed that the incidence of neutrophils and leukocytes was observed only at the beginning (10 days). Clear evidences of pin degradation by host cells started at 14 days and it was more intensive at 60 days, when we detected the majority of the presence of giant multinucleated cells, which were very similar to osteoclast cells contacting the implanted pin. To check osteoclastogenesis at 60 days, we evaluated RANKL expression and it was positive for those resident multinucleated cells while a new bone deposition was verified surrounding the pins in all evaluated periods. Conclusions: Altogether, our results showed that pins from fully processed bovine bone are biocompatible and absorbable, allowing bone neoformation and it is a promissory device for biomedical applications.
Resumo:
In this paper, we propose three novel mathematical models for the two-stage lot-sizing and scheduling problems present in many process industries. The problem shares a continuous or quasi-continuous production feature upstream and a discrete manufacturing feature downstream, which must be synchronized. Different time-based scale representations are discussed. The first formulation encompasses a discrete-time representation. The second one is a hybrid continuous-discrete model. The last formulation is based on a continuous-time model representation. Computational tests with state-of-the-art MIP solver show that the discrete-time representation provides better feasible solutions in short running time. On the other hand, the hybrid model achieves better solutions for longer computational times and was able to prove optimality more often. The continuous-type model is the most flexible of the three for incorporating additional operational requirements, at a cost of having the worst computational performance. Journal of the Operational Research Society (2012) 63, 1613-1630. doi:10.1057/jors.2011.159 published online 7 March 2012
Resumo:
The aim of solving the Optimal Power Flow problem is to determine the optimal state of an electric power transmission system, that is, the voltage magnitude and phase angles and the tap ratios of the transformers that optimize the performance of a given system, while satisfying its physical and operating constraints. The Optimal Power Flow problem is modeled as a large-scale mixed-discrete nonlinear programming problem. This paper proposes a method for handling the discrete variables of the Optimal Power Flow problem. A penalty function is presented. Due to the inclusion of the penalty function into the objective function, a sequence of nonlinear programming problems with only continuous variables is obtained and the solutions of these problems converge to a solution of the mixed problem. The obtained nonlinear programming problems are solved by a Primal-Dual Logarithmic-Barrier Method. Numerical tests using the IEEE 14, 30, 118 and 300-Bus test systems indicate that the method is efficient. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Network virtualization is a promising technique for building the Internet of the future since it enables the low cost introduction of new features into network elements. An open issue in such virtualization is how to effect an efficient mapping of virtual network elements onto those of the existing physical network, also called the substrate network. Mapping is an NP-hard problem and existing solutions ignore various real network characteristics in order to solve the problem in a reasonable time frame. This paper introduces new algorithms to solve this problem based on 0–1 integer linear programming, algorithms based on a whole new set of network parameters not taken into account by previous proposals. Approximative algorithms proposed here allow the mapping of virtual networks on large network substrates. Simulation experiments give evidence of the efficiency of the proposed algorithms.
Resumo:
Many combinatorial problems coming from the real world may not have a clear and well defined structure, typically being dirtied by side constraints, or being composed of two or more sub-problems, usually not disjoint. Such problems are not suitable to be solved with pure approaches based on a single programming paradigm, because a paradigm that can effectively face a problem characteristic may behave inefficiently when facing other characteristics. In these cases, modelling the problem using different programming techniques, trying to ”take the best” from each technique, can produce solvers that largely dominate pure approaches. We demonstrate the effectiveness of hybridization and we discuss about different hybridization techniques by analyzing two classes of problems with particular structures, exploiting Constraint Programming and Integer Linear Programming solving tools and Algorithm Portfolios and Logic Based Benders Decomposition as integration and hybridization frameworks.
Resumo:
Combinatorial Optimization is a branch of optimization that deals with the problems where the set of feasible solutions is discrete. Routing problem is a well studied branch of Combinatorial Optimization that concerns the process of deciding the best way of visiting the nodes (customers) in a network. Routing problems appear in many real world applications including: Transportation, Telephone or Electronic data Networks. During the years, many solution procedures have been introduced for the solution of different Routing problems. Some of them are based on exact approaches to solve the problems to optimality and some others are based on heuristic or metaheuristic search to find optimal or near optimal solutions. There is also a less studied method, which combines both heuristic and exact approaches to face different problems including those in the Combinatorial Optimization area. The aim of this dissertation is to develop some solution procedures based on the combination of heuristic and Integer Linear Programming (ILP) techniques for some important problems in Routing Optimization. In this approach, given an initial feasible solution to be possibly improved, the method follows a destruct-and-repair paradigm, where the given solution is randomly destroyed (i.e., customers are removed in a random way) and repaired by solving an ILP model, in an attempt to find a new improved solution.
Resumo:
One of the most interesting challenge of the next years will be the Air Space Systems automation. This process will involve different aspects as the Air Traffic Management, the Aircrafts and Airport Operations and the Guidance and Navigation Systems. The use of UAS (Uninhabited Aerial System) for civil mission will be one of the most important steps in this automation process. In civil air space, Air Traffic Controllers (ATC) manage the air traffic ensuring that a minimum separation between the controlled aircrafts is always provided. For this purpose ATCs use several operative avoidance techniques like holding patterns or rerouting. The use of UAS in these context will require the definition of strategies for a common management of piloted and piloted air traffic that allow the UAS to self separate. As a first employment in civil air space we consider a UAS surveillance mission that consists in departing from a ground base, taking pictures over a set of mission targets and coming back to the same ground base. During all mission a set of piloted aircrafts fly in the same airspace and thus the UAS has to self separate using the ATC avoidance as anticipated. We consider two objective, the first consists in the minimization of the air traffic impact over the mission, the second consists in the minimization of the impact of the mission over the air traffic. A particular version of the well known Travelling Salesman Problem (TSP) called Time-Dependant-TSP has been studied to deal with traffic problems in big urban areas. Its basic idea consists in a cost of the route between two clients depending on the period of the day in which it is crossed. Our thesis supports that such idea can be applied to the air traffic too using a convenient time horizon compatible with aircrafts operations. The cost of a UAS sub-route will depend on the air traffic that it will meet starting such route in a specific moment and consequently on the avoidance maneuver that it will use to avoid that conflict. The conflict avoidance is a topic that has been hardly developed in past years using different approaches. In this thesis we purpose a new approach based on the use of ATC operative techniques that makes it possible both to model the UAS problem using a TDTSP framework both to use an Air Traffic Management perspective. Starting from this kind of mission, the problem of the UAS insertion in civil air space is formalized as the UAS Routing Problem (URP). For this reason we introduce a new structure called Conflict Graph that makes it possible to model the avoidance maneuvers and to define the arc cost function of the departing time. Two Integer Linear Programming formulations of the problem are proposed. The first is based on a TDTSP formulation that, unfortunately, is weaker then the TSP formulation. Thus a new formulation based on a TSP variation that uses specific penalty to model the holdings is proposed. Different algorithms are presented: exact algorithms, simple heuristics used as Upper Bounds on the number of time steps used, and metaheuristic algorithms as Genetic Algorithm and Simulated Annealing. Finally an air traffic scenario has been simulated using real air traffic data in order to test our algorithms. Graphic Tools have been used to represent the Milano Linate air space and its air traffic during different days. Such data have been provided by ENAV S.p.A (Italian Agency for Air Navigation Services).
Resumo:
This thesis addresses the formulation of a referee assignment problem for the Italian Volleyball Serie A Championships. The problem has particular constraints such as a referee must be assigned to different teams in a given period of times, and the minimal/maximal level of workload for each referee is obtained by considering cost and profit in the objective function. The problem has been solved through an exact method by using an integer linear programming formulation and a clique based decomposition for improving the computing time. Extensive computational experiments on real-world instances have been performed to determine the effectiveness of the proposed approach.