Algorithms for UAS insertion in civil air space


Autoria(s): Persiani, Carlo Alfredo
Contribuinte(s)

Toth, Paolo

Data(s)

29/03/2011

Resumo

One of the most interesting challenge of the next years will be the Air Space Systems automation. This process will involve different aspects as the Air Traffic Management, the Aircrafts and Airport Operations and the Guidance and Navigation Systems. The use of UAS (Uninhabited Aerial System) for civil mission will be one of the most important steps in this automation process. In civil air space, Air Traffic Controllers (ATC) manage the air traffic ensuring that a minimum separation between the controlled aircrafts is always provided. For this purpose ATCs use several operative avoidance techniques like holding patterns or rerouting. The use of UAS in these context will require the definition of strategies for a common management of piloted and piloted air traffic that allow the UAS to self separate. As a first employment in civil air space we consider a UAS surveillance mission that consists in departing from a ground base, taking pictures over a set of mission targets and coming back to the same ground base. During all mission a set of piloted aircrafts fly in the same airspace and thus the UAS has to self separate using the ATC avoidance as anticipated. We consider two objective, the first consists in the minimization of the air traffic impact over the mission, the second consists in the minimization of the impact of the mission over the air traffic. A particular version of the well known Travelling Salesman Problem (TSP) called Time-Dependant-TSP has been studied to deal with traffic problems in big urban areas. Its basic idea consists in a cost of the route between two clients depending on the period of the day in which it is crossed. Our thesis supports that such idea can be applied to the air traffic too using a convenient time horizon compatible with aircrafts operations. The cost of a UAS sub-route will depend on the air traffic that it will meet starting such route in a specific moment and consequently on the avoidance maneuver that it will use to avoid that conflict. The conflict avoidance is a topic that has been hardly developed in past years using different approaches. In this thesis we purpose a new approach based on the use of ATC operative techniques that makes it possible both to model the UAS problem using a TDTSP framework both to use an Air Traffic Management perspective. Starting from this kind of mission, the problem of the UAS insertion in civil air space is formalized as the UAS Routing Problem (URP). For this reason we introduce a new structure called Conflict Graph that makes it possible to model the avoidance maneuvers and to define the arc cost function of the departing time. Two Integer Linear Programming formulations of the problem are proposed. The first is based on a TDTSP formulation that, unfortunately, is weaker then the TSP formulation. Thus a new formulation based on a TSP variation that uses specific penalty to model the holdings is proposed. Different algorithms are presented: exact algorithms, simple heuristics used as Upper Bounds on the number of time steps used, and metaheuristic algorithms as Genetic Algorithm and Simulated Annealing. Finally an air traffic scenario has been simulated using real air traffic data in order to test our algorithms. Graphic Tools have been used to represent the Milano Linate air space and its air traffic during different days. Such data have been provided by ENAV S.p.A (Italian Agency for Air Navigation Services).

Formato

application/pdf

Identificador

http://amsdottorato.unibo.it/3880/1/Persiani_CarloAlfredo_Tesi.pdf

urn:nbn:it:unibo-2745

Persiani, Carlo Alfredo (2011) Algorithms for UAS insertion in civil air space, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Automatica e ricerca operativa <http://amsdottorato.unibo.it/view/dottorati/DOT204/>, 23 Ciclo. DOI 10.6092/unibo/amsdottorato/3880.

Idioma(s)

en

Publicador

Alma Mater Studiorum - Università di Bologna

Relação

http://amsdottorato.unibo.it/3880/

Direitos

info:eu-repo/semantics/openAccess

Palavras-Chave #MAT/09 Ricerca operativa
Tipo

Tesi di dottorato

NonPeerReviewed