940 resultados para Moldagem por injeção de plastico
Resumo:
Waterflooding is a technique largely applied in the oil industry. The injected water displaces oil to the producer wells and avoid reservoir pressure decline. However, suspended particles in the injected water may cause plugging of pore throats causing formation damage (permeability reduction) and injectivity decline during waterflooding. When injectivity decline occurs it is necessary to increase the injection pressure in order to maintain water flow injection. Therefore, a reliable prediction of injectivity decline is essential in waterflooding projects. In this dissertation, a simulator based on the traditional porous medium filtration model (including deep bed filtration and external filter cake formation) was developed and applied to predict injectivity decline in perforated wells (this prediction was made from history data). Experimental modeling and injectivity decline in open-hole wells is also discussed. The injectivity of modeling showed good agreement with field data, which can be used to support plan stimulation injection wells
Resumo:
The application of thermal methods, to increase the recovery of heavy oil in mature fields through drainage with multilateral and horizontal wells, has been thoroughly studied, theorically, experimentally, testing new tools and methods. The continuous injection of steam, through a steam injector well and a horizontal producer well in order to improve horizontal sweep of the fluid reservoir, it is an efficient method. Starting from an heterogeneous model, geologically characterized, modeling geostatistics, set history and identification of the best path of permeability, with seismic 3D, has been dubbed a studying model. It was studied horizontal wells in various directions in relation to the steam and the channel of higher permeability, in eight different depths. Into in the same area were studied, the sensitivity of the trajectories of horizontal wells, according to the depth of navigation. With the purpose of obtaining the highest output of oil to a particular flow, quality, temperature and time for the injection of steam. The wells studied showed a significant improvement in the cumulative oil recovery in one of the paths by promoting an alternative to application in mature fields or under development fields with heavy oil
Resumo:
The oil companies in the area in general are looking for new technologies that can increase the recovery factor of oil contained in reservoirs. These investments are mainly aimed at reducing the costs of projects which are high. Steam injection is one of these special methods of recovery in which steam is injected into the reservoir in order to reduce the viscosity of the oil and make it more mobile. The process assisted gravity drainage steam (SAGD) using steam injection in its mechanism, as well as two parallel horizontal wells. In this process steam is injected through the horizontal injection well, then a vapor chamber is formed by heating the oil in the reservoir and, by the action of gravitational forces, this oil is drained down to where the production well. This study aims to analyze the influence of pressure drop and heat along the injection well in the SAGD process. Numerical simulations were performed using the thermal simulator STARS of CMG (Computer Modeling Group). The parameters studied were the thermal conductivity of the formation, the flow of steam injection, the inner diameter of the column, the steam quality and temperature. A factorial design was used to verify the influence of the parameters studied in the recovery factor. We also analyzed different injection flow rates for the model with pressure drop and no pressure drop, as well as different maximum flow rates of oil production. Finally, we performed an economic analysis of the two models in order to check the profitability of the projects studied. The results showed that the pressure drop in injection well have a significant influence on the SAGD process.
Resumo:
Stimulation operations have with main objective restore or improve the productivity or injectivity rate in wells. Acidizing is one of the most important operations of well stimulation, consist in inject acid solutions in the formation under fracture formation pressure. Acidizing have like main purpose remove near wellbore damage, caused by drilling or workover operations, can be use in sandstones and in carbonate formations. A critical step in acidizing operation is the control of acid-formation reaction. The high kinetic rate of this reaction, promotes the consumed of the acid in region near well, causing that the acid treatment not achive the desired distance. In this way, the damage zone can not be bypassed. The main objective of this work was obtain stable systems resistant to the different conditions found in field application, evaluate the kinetic of calcite dissolution in microemulsion systems and simulate the injection of this systems by performing experiments in plugs. The systems were obtained from two non ionic surfactants, Unitol L90 and Renex 110, with sec-butanol and n-butanol like cosurfactants. The oily component of the microemlsion was xilene and kerosene. The acqueous component was a solution of HCl 15-26,1%. The results shown that the microemulsion systems obtained were stable to temperature until 100ºC, high calcium concentrations, salinity until 35000 ppm and HCl concentrations until 25%. The time for calcite dissolution in microemulsion media was 14 times slower than in aqueous HCl 15%. The simulation in plugs showed that microemulsion systems promote a distributed flux and promoted longer channels. The permeability enhancement was between 177 - 890%. The results showed that the microemulsion systems obtained have potential to be applied in matrix acidizing
Resumo:
The method "toe-to-heel air injection" (THAITM) is a process of enhanced oil recovery, which is the integration of in-situ combustion with technological advances in drilling horizontal wells. This method uses horizontal wells as producers of oil, keeping vertical injection wells to inject air. This process has not yet been applied in Brazil, making it necessary, evaluation of these new technologies applied to local realities, therefore, this study aimed to perform a parametric study of the combustion process with in-situ oil production in horizontal wells, using a semi synthetic reservoir, with characteristics of the Brazilian Northeast basin. The simulations were performed in a commercial software "STARS" (Steam, Thermal, and Advanced Processes Reservoir Simulator), from CMG (Computer Modelling Group). The following operating parameters were analyzed: air rate, configuration of producer wells and oxygen concentration. A sensitivity study on cumulative oil (Np) was performed with the technique of experimental design, with a mixed model of two and three levels (32x22), a total of 36 runs. Also, it was done a technical economic estimative for each model of fluid. The results showed that injection rate was the most influence parameter on oil recovery, for both studied models, well arrangement depends on fluid model, and oxygen concentration favors recovery oil. The process can be profitable depends on air rate
Resumo:
Injectivity decline, which can be caused by particle retention, generally occurs during water injection or reinjection in oil fields. Several mechanisms, including straining, are responsible for particle retention and pore blocking causing formation damage and injectivity decline. Predicting formation damage and injectivity decline is essential in waterflooding projects. The Classic Model (CM), which incorporates filtration coefficients and formation damage functions, has been widely used to predict injectivity decline. However, various authors have reported significant discrepancies between Classical Model and experimental results, motivating the development of deep bed filtration models considering multiple particle retention mechanisms (Santos & Barros, 2010; SBM). In this dissertation, inverse problem solution was studied and a software for experimental data treatment was developed. Finally, experimental data were fitted using both the CM and SBM. The results showed that, depending on the formation damage function, the predictions for injectivity decline using CM and SBM models can be significantly different
Resumo:
Nearly 3 x 1011 m3 of medium and light oils will remain in reservoirs worldwide after conventional recovery methods have been exhausted and much of this volume would be recovered by Enhanced Oil Recovery (EOR) methods. The in-situ combustion (ISC) is an EOR method in which an oxygen-containing gas is injected into a reservoir where it reacts with the crude oil to create a high-temperature combustion front that is propagated through the reservoir. The High Pressure Air Injection (HPAI) method is a particular denomination of the air injection process applied in light oil reservoirs, for which the combustion reactions are dominant between 150 and 300°C and the generation of flue gas is the main factor to the oil displacement. A simulation model of a homogeneous reservoir was built to study, which was initially undergone to primary production, for 3 years, next by a waterflooding process for 21 more years. At this point, with the mature condition established into the reservoir, three variations of this model were selected, according to the recovery factors (RF) reached, for study the in-situ combustion (HPAI) technique. Next to this, a sensitivity analysis on the RF of characteristic operational parameters of the method was carried out: air injection rate per well, oxygen concentration into the injected gas, patterns of air injection and wells perforations configuration. This analysis, for 10 more years of production time, was performed with assistance of the central composite design. The reservoir behavior and the impacts of chemical reactions parameters and of reservoir particularities on the RF were also evaluated. An economic analysis and a study to maximize the RF of the process were also carried out. The simulation runs were performed in the simulator of thermal processes in reservoirs STARS (Steam, Thermal, and Advanced Processes Reservoir Simulator) from CMG (Computer Modelling Group). The results showed the incremental RF were small and the net present value (NPV) is affected by high initial investments to compress the air. It was noticed that the adoption of high oxygen concentration into the injected gas and of the five spot pattern tends to improve the RF, and the wells perforations configuration has more influence with the increase of the oil thickness. Simulated cases relating to the reservoir particularities showed that smaller residual oil saturations to gas lead to greater RF and the presence of heterogeneities results in important variations on the RF and on the production curves
Resumo:
Nowadays, most of the hydrocarbon reserves in the world are in the form of heavy oil, ultra - heavy or bitumen. For the extraction and production of this resource is required to implement new technologies. One of the promising processes for the recovery of this oil is the Expanding Solvent Steam Assisted Gravity Drainage (ES-SAGD) which uses two parallel horizontal wells, where the injection well is situated vertically above the production well. The completion of the process occurs upon injection of a hydrocarbon additive at low concentration in conjunction with steam. The steam adds heat to reduce the viscosity of the oil and solvent aids in reducing the interfacial tension between oil/ solvent. The main force acting in this process is the gravitational and the heat transfer takes place by conduction, convection and latent heat of steam. In this study was used the discretized wellbore model, where the well is discretized in the same way that the reservoir and each section of the well treated as a block of grid, with interblock connection with the reservoir. This study aims to analyze the influence of the pressure drop and heat along the injection well in the ES-SAGD process. The model used for the study is a homogeneous reservoir, semi synthetic with characteristics of the Brazilian Northeast and numerical simulations were performed using the STARS thermal simulator from CMG (Computer Modelling Group). The operational parameters analyzed were: percentage of solvent injected, the flow of steam injection, vertical distance between the wells and steam quality. All of them were significant in oil recovery factor positively influencing this. The results showed that, for all cases analyzed, the model considers the pressure drop has cumulative production of oil below its respective model that disregards such loss. This difference is more pronounced the lower the value of the flow of steam injection
Resumo:
The occurrence of heavy oil reservoirs have increased substantially and, due to the high viscosity characteristic of this type of oil, conventional recovery methods can not be applied. Thermal methods have been studied for the recovery of this type of oil, with a main objective to reduce its viscosity, by increasing the reservoir temperature, favoring the mobility of the oil and allowing an increasing in the productivity rate of the fields. In situ combustion (ISC) is a thermal recovery method in which heat is produced inside the reservoir by the combustion of part of the oil with injected oxygen, contrasting with the injection of fluid that is heated in the surface for subsequent injection, which leads to loss heat during the trajectory to the reservoir. The ISC is a favorable method for recovery of heavy oil, but it is still difficult to be field implemented. This work had as an objective the parametric analysis of ISC process applied to a semi-synthetic reservoir with characteristics of the Brazilian Northeast reservoirs using vertical production and vertical injection wells, as the air flow injection and the wells completions. For the analysis, was used a commercial program for simulation of oil reservoirs using thermal processes, called Steam, Thermal and Advanced Processes Reservoir Simulator (STARS) from Computer Modelling Group (CMG). From the results it was possible to analyze the efficiency of the ISC process in heavy oil reservoirs by increasing the reservoir temperature, providing a large decrease in oil viscosity, increasing its mobility inside the reservoir, as well as the improvement in the quality of this oil and therefore increasing significantly its recovered fraction. Among the analyzed parameters, the flow rate of air injection was the one which had greater influence in ISC, obtaining higher recovery factor the higher is the flow rate of injection, due to the greater amount of oxygen while ensuring the maintenance of the combustion front
Resumo:
Although there are a wide variety of additives that act in fresh state, to adjust the properties of cement, there is also a search by additions that improve the tenacity of the cement in the hardened state. This, in turn, can often be increased by inserting fibers, which act on the deflection of microcracks. This study aimed to use a microfiber glass wool (silica-based) as an additive reinforcing the cement matrix, improving the rupture tenacity, in order to prevent the propagation of microcracks in the cement sheath commonly found in oil wells submitted to high temperatures. The fibers were added at different concentrations, 2 to 5% (BWOC) and varied average sizes, grinding for 90 s, 180 s, 300 s, 600 s. The cement slurries were made with a density of 1,90 g/ cm3 (15,6 lb/gal), using Portland cement CPP- Special Class as the hydraulic binder and 40% silica flour. The characterization of the fiber was made by scanning electron microscopy (SEM), particle size by sieving, X-ray fluorescence (XRF), X-ray diffraction (XRD) and thermogravimetry (TG / DTG). Were performed technological tests set by the API (American Petroleum Institute) by rheology, stability, free water, compressive strength, as well as testing rupture energy, elastic modulus and permeability. The characterization results showed good thermal stability of the microfiber glass wool for application in oil wells submitted to steam injection and, also, that from the particle size data, it was possible to suggest that microfibers milled up to 300 s, are ideal to act as reinforcement to the cement slurries. The rheological parameters, there was committal of plastic viscosity when larger lengths were inserted of microfiber (F90). The values obtained by free water and stability were presented according to API. The mechanical properties, the incorporation of microfiber to the cement slurries gave better rupture tenacity, as compared to reference cement slurries. The values of compressive strength, elastic modulus and permeability have been maintained with respect to the reference cement slurries. Thus, cement slurries reinforced with microfiber glass wool can ensure good application for cementing oil wells submitted to steam injection, which requires control of microcracks, due to the thermal gradients
Resumo:
A galactose and sucrose specific lectin from the marine sponge Cliona varians named CvL was purified by acetone fractionation followed by Sepharose CL 4B affinity chromatography. Models of leukocyte migration in vivo were used to study the inflammatory activity of CvL through of mouse paw oedema and peritonitis. Effect of CvL on peritoneal macrophage activation was analyzed. Effects of corticoids and NSAIDS drugs were also evaluated on peritonitis stimulated by CvL. Results showed that mouse hind-paw oedema induced by sub plantar injections of CvL was dependent dose until 50µg/paw. This CvL dose when administered into mouse peritoneal cavities induced maxima cell migration (9283 cells/µL) at 24 hours after injection. This effect was preferentially inhibited by incubation of CvL with the carbohydrates D-galactose followed by sucrose. Pre-treatment of mice with 3% thioglycolate increases the peritoneal macrophage population 2.3 times, and enhanced the neutrophil migration after 24h CvL injection (75.8%, p<0.001) and no significant effect was observed in presence of fMLP. Finally, Pre-treatment of mice with dexamethason (cytokine antagonist) decreased 65.6%, (p<0.001), with diclofenac (non-selective NSAID) decreased 34.5%, (p<0.001) and Celecoxib (selective NSAID) had no effect on leukocyte migration after submission at peritonitis stimulated by CvL, respectively. Summarizing, data suggest that CvL shows pro-inflammatory activity, inducing neutrophil migration probably by pathway on resident macrophage activation and on chemotaxis mediated by cytokines
Resumo:
Avaliou-se a influência da disposição de mangueiras gotejadoras nos canteiros e a injeção ou não de cloro na água de irrigação, nas condições sanitárias do solo e da alface americana irrigada (Lactuca sativa L.) com águas receptoras de efluentes urbanos. Foram realizadas análises microbiológicas de amostras de água do solo e da alface, no decorrer de todo o ciclo de cultivo. Objetivou-se determinar a possível existência de Salmonella spp. e de formas evolutivas de parasitos humanos e a quantidade de coliformes fecais, em pontos e épocas diferentes do experimento, impedindo assim o consumo da alface. Os resultados não indicaram a presença dos dois primeiros em nenhuma das amostras, mas sim de parasitos não humanos (nematóides) de vida livre no solo. em relação à quantidade de coliformes fecais (NMP ml-1), o valor encontrado na cultura atende às exigências da Secretaria de Vigilância Sanitária do Ministério da Saúde brasileiro, porém a presença dos nematóides em quantidades superiores ao permitido pela Organização Mundial de Saúde (OMS) inviabiliza o seu consumo.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
A analgesia pós-operatória eficaz é especialmente importante após cirurgias torácicas, pois, além de aliviar a dor, facilita a retomada de atividades normais, incluindo a deambulação, a respiração e a tosse. Dessa forma, os objetivos deste estudo são: avaliar a eficácia analgésica da associação entre anestesia geral e raquianestesia com morfina e ropivacaína mais esquema multimodal em relação à anestesia geral e esquema multimodal em cirurgia de revascularização do miocárdio; analisar a eficácia analgésica da injeção subcutânea de lidocaína e analgesia multimodal na remoção de tubos torácicos em cirurgia de revascularização do miocárdio. A metodologia consiste em ensaio clínico randomizado, controlado, envolvendo 58 pacientes, de ambos os sexos, com idade média de 59,8 8,9 anos, estado físico ASA II e III. Os participantes foram alocados em dois grupos, sendo o GI composto por indivíduos submetidos à anestesia geral combinada à raquianestesia com morfina 400μg e 6 ml (30mg) a 8 ml (40mg) de ropivacaína a 0,5% e analgesia multimodal; já o GII foi composto por indivíduos submetidos à anestesia geral associada à analgesia multimodal. Foi avaliada a dor, ao despertar, nas primeiras 24 horas, e ao realizar exercício respiratório, ao retirar drenos de torácicos e o tempo para extubação. A análise estatística foi realizada pelos testes do Qui-quadrado e Teste t de Student e o teste de Fisher. O resultado obtido foi o seguinte: o GI apresentou menor intensidade de dor ao despertar (p= 0,001), nas primeiras 24 horas (p= 0,001) e durante a realização dos exercícios respiratórios (p= 0,004). Houve maior necessidade de analgesia complementar no grupo GII, com maior consumo de morfina (p= 0,05), e os efeitos colaterais leves, como náuseas (p= 0,001), vômito (p= 0,002), prurido (p= 0,030), predominaram no GI. Não houve diferença estatisticamente significante entre os grupos (P= 0,47), em relação à intensidade de dor na remoção dos drenos. Após as observações feitas, o estudo sugere que a anestesia geral combinada à raquianestesia com morfina associada à ropivacaína oferece melhor efeito analgésico no pós-operatório de cirurgia cardíaca. Adicionalmente, o estudo sugere que o efeito analgésico da injeção subcutânea de lidocaína 1% associado à analgesia multimodal não é eficaz
Resumo:
This study investigated the influence of partial colectomy associated with hepatectomy on the biodistribution of the 99mTc-phytate, on metabolic parameters, as well as labeling and morphology of red blood cells. Wistar rats were distributed into three groups (each with 6), nominated as colectomy, colectomy+hepatectomy and sham. In the 30th postoperative day all rats were injected with 99mTc-phytate 0.1mL i.v. (radioactivity 0.66 MBq). After 15 minutes, liver sample was harvested and weighed. Percentage radioactivity per gram of tissue (%ATI/g) was determined using an automatic gamma-counter. Serum AST, ALT, alkaline phosphatase and red blood cells labeling were determined. The liver %ATI/g and red blood cells labeling were lower in colectomy and colectomy+hepatectomy rats than in sham rats (p <0.05), and no difference was detected comparing the colectomy and colectomy+hepatectomy groups. Red blood cells morphology did not differ among groups. Serum levels of AST, ALT and alkaline fosfatase were significantly higher in colectomy+hepatectomy than in colectomy rats (p<0.001). Hepatectomy associated with colectomy lowered the uptake of radiopharmaceutical in liver and in red blood cells in rats, coinciding with changes in liver enzymatic activity