925 resultados para Low-temperature part


Relevância:

90.00% 90.00%

Publicador:

Resumo:

New technologies and sterilization agents for heat-sensitive materials are under intense investigation. Plasma sterilization, an atoxic low-temperature substitute for conventional sterilization, uses various gases that are activated by an electrical discharge, generating reactive species that promote lethality in microorganisms. Here, assays were performed using pure O-2 and O-2 + H2O2 mixture gas plasmas against a standard load of Bacillus atrophaeus spores inoculated on glass carriers inside PVC catheters. The sterilization efficiency was studied as a function of plasma system (reactive ion etching or inductively coupled plasma), biological monitor lumen diameter, gas, radio frequency power, and sub-lethal exposition time. After sterilization, the biological monitors were disassembled and the surviving bacteria were grown in trypticase soy broth using the most probable number technique. Plasma antimicrobial activity depended on the catheter's internal diameter and radio frequency powers. The N-2 + H2O2 mixture exhibited higher microbial efficacy than pure N-2 in both plasma systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have shown the possibility of operation by the piezooptical response of PbO-GeO2 glasses doped with rare earth ions and silver nanoparticles by illumination of double frequency CO2 nanosecond laser. Substantial influence of thermoannealing on the output photoinduced elastooptical susceptibilities was established. The effect is very sensitive to temperature and to the corresponding tensor components. The effect of thermoannealing leads to enhanced long-range ordering with the occurrence of corresponding trapping levels within the forbidden gaps. The discovered effects may be used for creation of low-temperature IR laser triggers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Low temperatures at the initial stages of rice development prevent fast germination and seedling establishment and may cause significant productivity losses. In order to develop rice cultivars exhibiting cold tolerance, it is necessary to investigate genetic resources, providing basic knowledge to allow the introduction of genes involved in low temperature germination ability from accessions into elite cultivars. Japanese rice accessions were evaluated at the germination under two conditions: 13 degrees C for 28 days (cold stress) and 28 degrees C for seven days (optimal temperature). The traits studied were coleoptile and radicle length under optimal temperature, coleoptile and radicle length under cold and percentage of the reduction in coleptile and radicle length due to low temperature. Among the accessions studied, genetic variation for traits related to germination under low temperatures was observed and accessions exhibiting adequate performance for all investigated traits were identified. The use of multivariate analysis allowed the identification of the genotypes displaying cold tolerance by smaller reductions in coleoptile and radicle lenght in the presence of cold and high vigour, by higher coleoptile and radicle growth under cold.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As in the case of most small organic molecules, the electro-oxidation of methanol to CO2 is believed to proceed through a so-called dual pathway mechanism. The direct pathway proceeds via reactive intermediates such as formaldehyde or formic acid, whereas the indirect pathway occurs in parallel, and proceeds via the formation of adsorbed carbon monoxide (COad). Despite the extensive literature on the electro-oxidation of methanol, no study to date distinguished the production of CO2 from direct and indirect pathways. Working under, far-from-equilibrium, oscillatory conditions, we were able to decouple, for the first time, the direct and indirect pathways that lead to CO2 during the oscillatory electro-oxidation of methanol on platinum. The CO2 production was followed by differential electrochemical mass spectrometry and the individual contributions of parallel pathways were identified by a combination of experiments and numerical simulations. We believe that our report opens some perspectives, particularly as a methodology to be used to identify the role played by surface modifiers in the relative weight of both pathways-a key issue to the effective development of catalysts for low temperature fuel cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we present a method to order low temperature (LT) self-assembled ferromagnetic In1-xMnxAs quantum dots (QDs) grown by molecular beam epitaxy (MBE). The ordered In1-xMnxAs QDs were grown on top of a non-magnetic In0.4Ga0.6As/GaAs(100) QDs multi-layered structure. The modulation of the chemical potential, due to the stacking, provides a nucleation center for the LT In1-xMnxAs QDs. For particular conditions, such as surface morphology and growth conditions, the In1-xMnxAs QDs align along lines like chains. This work also reports the characterization of QDs grown on plain GaAs(100) substrates, as well as of the ordered structures, as function of Mn content and growth temperature. The substitutional Mn incorporation in the InAs lattice and the conditions for obtaining coherent and incoherent structures are discussed from comparison between Raman spectroscopy and x-ray analysis. Ferromagnetic behavior was observed for all structures at 2K. We found that the magnetic moment axis changes from [110] in In1-xMnxAs over GaAs to [1-10] for the ordered In1-xMnxAs grown over GaAs template. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4745904]

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVE: The preservation of biological samples at a low temperature is important for later biochemical and/or histological analyses. However, the molecular viability of thawed samples has not been studied sufficiently in depth. The present study was undertaken to evaluate the viability of intact tissues, tissue homogenates, and isolated total RNA after defrosting for more than twenty-four hours. METHODS: The molecular viability of the thawed samples (n = 82) was assessed using the A260/A280 ratio, the RNA concentration, the RNA integrity, the level of intact mRNA determined by reverse transcriptase polymerase chain reaction, the protein level determined by Western blotting, and an examination of the histological structure. RESULTS: The integrity of the total RNA was not preserved in the thawed intact tissue, but the RNA integrity and level of mRNA were perfectly preserved in isolated defrosted samples of total RNA. Additionally, the level of beta-actin protein was preserved in both thawed intact tissue and homogenates. CONCLUSION: Isolated total RNA does not undergo degradation due to thawing for at least 24 hours, and it is recommended to isolate the total RNA as soon as possible after tissue collection. Moreover, the protein level is preserved in defrosted tissues.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nickel oxide nonoparticles successfully synthesized by a polymer percursor method are studied in this work. The analysis of X-ray powder diffraction data provides a mean crystallite size of 22 +/- 2 nm which is in a good agreement with the mean size estimated from transmission electron microscopy images. Whereas the magnetization (M) vs. magnetic field (H) curve obtained at 5 K is consistent with a ferromagnetic component which coexists with an antiferromagnetic component, the presence of two peaks in the zero-field-cooled trace suggests the occurrence of two blocking process. The broad maximum at high temperature was associated with the thermal relaxation of uncompensated spins at the particle core and the low temperature peak was assigned to the freeze of surface spins clusters. Static and dynamic magnetic results suggest that the correlations of surface spins clusters show a spin-glass-like below T-g = 7.3 +/- 0.1 K with critical exponents zv = 9.7 +/- 0.5 and beta = 0.7 +/- 0.1, which are consistent with typical reported for spin-glass systems. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigate the influence of sub-Ohmic dissipation on randomly diluted quantum Ising and rotor models. The dissipation causes the quantum dynamics of sufficiently large percolation clusters to freeze completely. As a result, the zero-temperature quantum phase transition across the lattice percolation threshold separates an unusual super-paramagnetic cluster phase from an inhomogeneous ferromagnetic phase. We determine the low-temperature thermodynamic behavior in both phases, which is dominated by large frozen and slowly fluctuating percolation clusters. We relate our results to the smeared transition scenario for disordered quantum phase transitions, and we compare the cases of sub-Ohmic, Ohmic, and super-Ohmic dissipation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present study deals with the determination of the activation energy for the thermal decomposition of two renewable fuels crude glycerin and beef tallow. The activation energies were investigated by using a thermogravimetric analyzer (TGA) in the temperature range of 25-600 degrees C in atmosphere of synthetic air. The TG curves of the thermal decomposition process of both samples were divided into several phases and the second, called PH2, was chosen for the kinetic study because it is associated with the combustion ignition. Differential Thermal Analysis (DTA) showed an endothermic event at the PH2 region for the crude glycerin corresponding to devolatilization, while for beef tallow, this step presented an exothermic event, called LTO (low-temperature oxidation), which is correlated with devolatilization followed by combustion. For the entire PH2, activation energy values for crude glycerin were between 90 kJ mol(-1) and 42 kJ mol(-1), while for the beef tallow they ranged from 50 kJ mol(-1) to 113 kJ mol (1). The activation energy values obtained at the pre-ignition stage - conversion between 0 and 0.45 - showed that the crude glycerin with higher values requires an additional energetic support at the start of combustion processes and the beef tallow ignites more easily, presenting lower values. According to the Wolfer's equation, a direct relation between the activation energy and the ignition delay is established and the results of this study provides useful data for the development and design of new combustion chambers and engines when non-traditional fuels are used as feedstock. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work we report studies of the photoluminescence emission in samples based on Si/SiOx films deposited by the Pulsed Electron Beam Ablation (PEBA) technique. The samples were prepared at room temperature using targets with different Si/SiO2 concentrations. The samples were characterized using X-ray Absorption Edge Spectroscopy (XANES) at the Si-K edge, Raman spectroscopy, Photoluminescence (PL) and X-ray Photoelectron Spectroscopy (XPS). The concentration of a-Si and nc-Si in the film was dependent on the silicon concentration in the target. It was also observed that the PL is strongly dependent on the structural amorphous/crystalline arrangement. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An interesting method to investigate the effect of fuel crossover in low temperature fuel cells consists of studying the open circuit interaction between the reducing fuel and an oxide-covered catalyst. Herein we report the experimental study of the open circuit interaction between borohydride and oxidized platinum surfaces in alkaline media. When compared to the case of hydrogen and other small organic molecules, two remarkable new features were observed. Firstly, the interaction with borohydride resulted in a very-fast reduction process with transient times about two to three orders of magnitude smaller. The second peculiarity was that the decrease of the open circuit potential was found to occur in two-stages and this, previously unseen, feature was correlated with the two-hump profile found in the backward sweep in the cyclic voltammogram The consequences of our findings are discussed in connection with fundamental and applied aspects. (C) 2011 Elsevier B.V All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this study was to evaluate the microbial growth on single-use vitrectomy probes reprocessed in healthcare practice. We investigated nine vitrectomy probes that had been reused and reprocessed using different methods. The samples were sectioned, individually, in portions of 3.5 cm, totaling 979 sampling units (extensions, connectors and vitrectomy cutters), which were inoculated in culture medium and incubated at 37 C for 14 days. The results showed microbial growth on 57 (5.8%) sample units, 25 of which had been sterilized using ethylene oxide, 16 by hydrogen peroxide plasma, and 16 by low-temperature steam and formaldehyde. Seventeen microbial species were identified. The most prevalent were: Micrococcus spp., coagulase-negative Staphylococcus, Pseudomonas spp., and Bacillus subtilis. The reuse of single-use vitrectomy probes was shown to be unsafe, therefore this practice is not recommended.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Er3+-Yb3+ co-doped MgAl2O4 phosphor powders have been prepared by the combustion method. The phosphor powders are well characterized by X-ray diffraction (XRD) and energy dispersive (EDX) techniques. The absorption spectrum of Er3+/Er3+-Yb3+ doped/co-doped phosphor powder has been recorded in the UV-Vis-NIR region of the electro-magnetic spectrum. The evidence for indirect pumping under 980 nm excitation of Er3+ from Yb3+ was observed in the MgAl2O4 matrix material. Electron spin resonance (ESR) studies were carried out to identify the defect centres responsible for the thermally stimulated luminescence (TSL) process in MgAl2O4:Er3+ phosphor. Three defect centres were identified in irradiated phosphor by ESR measurements which were carried out at room temperature and these were assigned to an O- ion and F+ centres. O- ion (hole centre) appears to correlate with the low temperature TSL peak at 210 A degrees C and one of the F+ centres (electron centre) is related to the high temperature peak at 460 A degrees C.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In a recent study we demonstrated the emergence of turbulence in a trapped Bose-Einstein condensate of Rb-87 atoms. An intriguing observation in such a system is the behavior of the turbulent cloud during free expansion. The aspect ratio of the cloud size does not change in the way one would expect for an ordinary non-rotating (vortex-free) condensate. Here we show that the anomalous expansion can be understood, at least qualitatively, in terms of the presence of vorticity distributed throughout the cloud, effectively counteracting the usual reversal of the aspect ratio seen in free time-of-flight expansion of non-rotating condensates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The low-temperature states of bosonic fluids exhibit fundamental quantum effects at the macroscopic scale: the best-known examples are Bose-Einstein condensation and superfluidity, which have been tested experimentally in a variety of different systems. When bosons interact, disorder can destroy condensation, leading to a 'Bose glass'. This phase has been very elusive in experiments owing to the absence of any broken symmetry and to the simultaneous absence of a finite energy gap in the spectrum. Here we report the observation of a Bose glass of field-induced magnetic quasiparticles in a doped quantum magnet (bromine-doped dichloro-tetrakis-thiourea-nickel, DTN). The physics of DTN in a magnetic field is equivalent to that of a lattice gas of bosons in the grand canonical ensemble; bromine doping introduces disorder into the hopping and interaction strength of the bosons, leading to their localization into a Bose glass down to zero field, where it becomes an incompressible Mott glass. The transition from the Bose glass (corresponding to a gapless spin liquid) to the Bose-Einstein condensate (corresponding to a magnetically ordered phase) is marked by a universal exponent that governs the scaling of the critical temperature with the applied field, in excellent agreement with theoretical predictions. Our study represents a quantitative experimental account of the universal features of disordered bosons in the grand canonical ensemble.