936 resultados para Laser synchrotron radiation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Infrared to ultraviolet and visible upconversion luminescence was demonstrated in trivalent cerium doped YAlO3 crystal (Ce3+: YAP) under focused infrared femtosecond laser irradiation. The fluorescence spectra show that the upconverted luminescence comes from the 5d-4f transitions of trivalent cerium ions. The dependence of luminescence intensity of trivalent cerium on infrared pumping power reveals that the conversion of infrared radiation is dominated by three-photon excitation process. It is suggested that the simultaneous absorption of three infrared photons pumps the Ce3+ ion into upper 5d level, which quickly nonradiatively relax to lowest 5d level. Thereafter, the ions radiatively return to the ground states, leading to the characteristic emission of Ce3+. (c) 2005 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser conditioning effects of the HfO2/SiO2 antireflective (AR) coatings at 1064 nm and the accumulation effects of multishot laser radiation were investigated. The HfO2/SiO2 AR coatings were prepared by E-beam evaporation (EBE). The singleshot and multi-shot laser induced damage threshold was detected following ISO standard 11254-1.2, and the laser conditioning was conducted by three-step raster scanning method. It was found that the single-shot LIDT and multi-shot LIDT was almost the same. The damage mostly > 80% occurred in the first shot under multi-shot laser radiation, and after that the damage occurring probability plummeted to < 5%. There was no obvious enhancement of the laser damage resistance for both the single-shot and multi-shot laser radiation of the AR coatings after laser conditioning. A Nomarski microscope was employed to map the damage morphology, and it found that the damage behavior is defect-initiated for both unconditioned and conditioned samples. © 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article explores the possibility of using a laser to remove toner-print from office paper. Removal of print would allow paper to be re-used instead of being recycled or disposed into a landfill. This might reduce climate change gas emissions per tonne of office paper by between 45% and 95%. Although there is little previous research on the area, a number of related articles on paper conservation methods using laser radiation can be found in literature. Different authors have studied the effects of laser energy on blank paper and its application for cleaning soiled paper. However, this study examines toner-print removal from paper by laser ablation. In this article a laser in the visible range is applied to a single toner-paper combination with a range of energy fluences. Results are evaluated by means of colour measurements under the L*a*b* colour space and SEM images. Analysis of the samples reveals that there are parameters under which it is possible to remove toner from paper without causing significant discolouration or damage to the substrate. This means that it is technically possible to remove toner-print for paper re-use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We bring together two areas of terahertz (THz) technology that have benefited from recent advancements in research, i.e., graphene, a material that has plasmonic resonances in the THz frequency, and quantum cascade lasers (QCLs), a compact electrically driven unipolar source of THz radiation. We demonstrate the use of single-layer large-area graphene to indirectly modulate a THz QCL operating at 2.0 THz. By tuning the Fermi level of the graphene via a capacitively coupled backgate voltage, the optical conductivity and, hence, the THz transmission can be varied. We show that, by changing the pulsing frequency of the backgate, the THz transmission can be altered. We also show that, by varying the pulsing frequency of the backgate from tens of Hz to a few kHz, the amplitude-modulated THz signal can be switched by 15% from a low state to a high state. © 2009-2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For a second-order DFB-LD, the presence of a metal contact layer can reduce I-st-order radiation. Part of the reflected power is redistributed into guided modes and results in a variation of the effective coupling coefficient kappa(eff). In this paper, we study the effect of the Au top contact's reflection on the kappa(eff) of 2(nd)-order DFB lasers. (C) 2004 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Double X-ray diffraction has been used to investigate InGaAs/InAlAs quantum cascade (QC) laser grown on InP substrate by molecule beam epitaxy, by means of which, excellent lattice matching, the interface smoothness, the uniformity of the thickness and the composition of the epilayer are disclosed. What is more, these results are in good agreement with designed value. The largest lattice mismatch is within 0.18% and the intersubband absorption wavelength between two quantized energy levels is achieved at about lambda = 5.1 mum at room temperature. At 77 K, the threshold density of the QC laser is less than 2.6 kA/cm(2) when the repetition rate is 5 kHz and the duty cycle is 1%. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

X-ray diffraction, as an effective probe and simple method, is used to ascertain the precise control of the epilayer thickness and composition. Intersubband absorption from the whole structure of the QC laser is used to monitor the wavelength of the QC laser and the material quality. Path for growth of high-quality InP-based InGaAs/InAlAs quantum cascade laser material is realized. The absorption between two quantized energy levels is achieved at similar to4.7 mum. Room temperature laser action is achieved at lambda approximate to 5.1 - 5.2 mum. For some devices, if the peak output power is kept at 2 mW, quasi-continuous wave operation at room temperature can persist for more than I It. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vertical radiation loss of three-dimensional (3-D) microresonators is investigated by 3-D finite-difference time-domain (FDTD) simulation. The simulation shows that the vertical radiation causes an important loss in the microresonators with weak waveguiding, and result in decrease of the quality factors (Q-factors) of whispering-gallery (WG) modes. Through the simulation, we find that TM-like modes have much weaker vertical radiation loss than TE-like modes. High Q-factor TM-like modes are observed in the 3-D microresonators with weak vertical waveguiding, but the Q-factors of TE-like modes decrease greatly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 7.8-mu m surface emitting second-order distributed feedback quantum cascade laser (DFB QCL) structure with metallized surface grating is studied. The modal property of this structure is described by utilizing coupled-mode theory where the coupling coefficients are derived from exact Floquet-Bloch solutions of infinite periodic structure. Based on this theory, the influence of waveguide structure and grating topography as well as device length on the laser performance is numerically investigated. The optimized surface emitting second-order DFB QCL structure design exhibits a high surface outcoupling efficiency of 22% and a low threshold gain of 10 cm(-1). Using a pi phase-shift in the centre of the grating, a high-quality single-lobe far-field radiation pattern is obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the phase-conjugate polarization interference between two one-photon processes. When the laser has broadband linewidth, the sum-frequency polarization beat (SFPB) signal shows the autocorrelation of SFPB exhibits hybrid radiation-matter detuning terahertz damping oscillation. As an attosecond ultrafast modulation process, it can be extended intrinsically to any sum-frequency of energy-levels. It hits been also found that the asymmetric behaviors of the polarization beat signals result from the unbalanced dispersion effects, (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel ultra-wideband electromagnetic pulse generating method based on the photoconductive semiconductor switches (PCSS) is presented. Gallium arsenide is used to develop the PCSS for an ultrashort electromagnetic pulse source. The pulse generated by such PCSS is within picosecond (ps) time scale, and can yield power pulse with an voltage over 10 kV. The experimental results show that the pulses are stable, with the peak-peak amplitude change of 6% and the time jitter within several picoseconds. The radiations of the PCSS triggered by the picosecond laser and fenitosecond laser pulse series illustrate that the electromagnetic pulses would have high repetition of more than 80 MHz and frequency bandwidth of DC-6 GHz. The radiations of "lock-on " mode of the PCSS are also analyzed here. (c) 2007 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the phase-conjugate polarization interference between two-pathway excitations, we obtained an analytic closed form for the second-order or fourth-order Markovian stochastic correlation of the V three-level sum-frequency polarization beat (SFPB) in attosecond scale. Novel interferometric oscillatory behavior is exposed in terms of radiation-radiation, radiation-matter, and matter-matter polarization beats. The phase-coherent control of the light beams in the SFPB is subtle. When the laser has broadband linewidth, the homodyne detected SFPB signal shows resonant-nonresonant cross correlation, a drastic difference for three Markovian stochastic fields, and the autocorrelation of the SFPB exhibits hybrid radiation-matter detuning terahertz damping oscillation. As an attosecond ultrafast modulation process, it can be extended intrinsically to any sum frequency of energy levels. It has been also found that the asymmetric behaviors of the polarization beat signals due to the unbalanced controllable dispersion effects between the two arms of interferometer do not affect the overall accuracy in case using the SFPB to measure the Doppler-free energy-level sum of two excited states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the observation of intense spontaneous emission of green light from LiF:F-2:F-3(+) centers in active channel waveguides generated in lithium fluoride crystals by near-infrared femtosecond laser radiation. While irradiating the crystal at room temperature with 405 nm light from a laser diode, yellow and green emission was seen by the naked eye. Stripe waveguides were fabricated by translating the crystal along the irradiated laser pulse, and their guiding properties and fluorescence spectra at 540 nm demonstrated. This single-step process inducing a waveguide structure offers a good prospect for the development of a waveguide laser in bulk LiF crystals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nature of optical confinement in phase-locked laser arrays (PLLAs) with a mesa-stripe structure (MSS) has been studied. Two main mechanisms are distinguished, which are based on the variation of the waveguide effective refractive index due to MSS formation and on the refractive index modulation induced by the heating of the structure. Stable operation was achieved when either weak or strong optical coupling was realized in the PLLA. A phase-locked regime of radiation was obtained only for laser diodes with strong optical coupling. In the latter case the angle divergency was not greater than 2 degrees for the antisymmetric supermode emission from the PLLA.