876 resultados para Gallium Indium Nitride Arsenide
Resumo:
The mechanical properties and fracture behavior of silicon nitride (SiNx) thin film fabricated by plasma-enhanced chemical vapor deposition is reported. Plane-strain moduli, prestresses, and fracture strengths of silicon nitride thin film; deposited both oil a bare Si substrate and oil a thermally oxidized Si substrate were extracted using bulge testing combined with a refined load-deflection model of long rectangular membranes. The plane-strain modu i and prestresses of SiNx thin films have little dependence on the substrates, that is, for the bare Si substrate, they are 133 +/- 19 GPa and 178 +/- 22 MPa, respectively, while for the thermally oxidized substrate, they are 140 +/- 26 Gila and 194 +/- 34 MPa, respectively. However, the fracture strength values of SiNx films grown on the two substrates are quite different, i.e., 1.53 +/- 0.33 Gila and 3.08 +/- 0.79 GPa for the bare Si substrate a A the oxidized Si substrate, respectively. The reference stresses were computed by integrating the local stress of the membrane at the fracture over the edge, Surface, and volume of the specimens and fitted with the Weibull distribution function. For SiNx thin film produced oil the bare Si Substrate, the Volume integration gave a significantly better agreement between data and model, implying that the volume flaws re the dominant fracture origin. For SiNx thin film grown on the oxidized Si substrate, the fit quality of surface and edge integration was significantly better than the Volume integration, and the dominant surface and edge flaws could be caused by buffered HF attacking the SiNx layer during SiO2 removal. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.
Resumo:
Confinement factor and absorption loss of AlInGaN based multiquantum well laser diodes (LDs) were investigated by numerical simulation based on a two-dimensional waveguide model. The simulation results indicate that an increased ridge height of the waveguide structure can enhance the lateral optical confinement and reduce the threshold current. For 405 nm violet LDs, the effects of p-AlGaN cladding layer composition and thickness on confinement factor and absorption loss were analyzed. The experimental results are in good agreement with the simulation analysis. Compared to violet LD, the confinement factors of 450 nm blue LD and 530 nm green LD were much lower. Using InGaN as waveguide layers that has higher refractive index than GaN will effectively enhance the optical confinement for blue and green LDs. The LDs based on nonpolar substrate allow for thick well layers and will increase the confinement factor several times. Furthermore, the confinement factor is less sensitive to alloys composition of waveguide and cladding layers, being an advantage especially important for ultraviolet and green LDs.
Resumo:
The alloy formation enthalpy and band structure of InGaN nanowires were studied by a combined approach of the valence-force field model, Monte Carlo simulation, and density-functional theory (DFT). For both random and ground-state structures of the coherent InGaN alloy, the nanowire configuration was found to be more favorable for the strain relaxation than the bulk alloy. We proposed an analytical formula for computing the band gap of any InGaN nanowires based on the results from the screened exchange hybrid DFT calculations, which in turn reveals a better band-gap tunability in ternary InGaN nanowires than the bulk alloy.
Resumo:
The effect of beta particles interaction on the optical properties of MOCVD grown GaN is reported. A significant change in luminescence properties of GaN is observed after exposing the material with 0.6 MeV beta particles with low dose of 10(12) cm(-2). The results obtained from photoluminescence measurements of irradiated GaN samples in low dose are found contradictory to those reported in literature for samples irradiated with heavy dose (> 10(15) cm(-2)) of electron. An increase in intensity of yellow luminescence has been observed with increasing dose of beta particles which is in disagreement to the already reported results in literature for heavily irradiated samples. A model has been proposed to sort out this inconsistency. The increase in YL intensity at low dose is attributed to the increase in concentration of VGaON complex whereas production of non-radiative VGaON clusters is assumed to justify the decrease in YL intensity at high dose.
Resumo:
Undoped Ga-Sb samples were investigated by positron lifetime spectroscopy (PAS) and the coincident Doppler broadening (CDB) technique. PAS measurement indicated that there were monovacancy-type defects in undoped Ga-Sb samples, which were identified to be predominantly Ca vacancy (V-Ga) related defects by combining the CDB measurements. After annealing of these samples at 520 C, positron shallow trapping have been observed and should be due to Ga-Sb defects. Undoped Ga-Sb is intrinsically p-type having a residual carrier density of 10(16)-10(17) cm(-3). And the Ga-Sb antisite defects are stable in the (0), (1-) and (2-) charge states and act as a double acceptor. Thus, we infer that Ga-Sb antisite defects are the acceptor contributing to the p-type conduction for undoped samples. (C) 2004 Elsevier B.V All rights reserved.
Indium mole fraction effect on the structural and optical properties of quaternary AlInGaN epilayers
Resumo:
AlInGaN quaternary epilayers with varying In mole fraction were investigated using triple-axis x-ray diffraction and photoluminescence measurements. The indium compositional fluctuation is enhanced with increasing In mole fraction, whereas the mosaicity of the AlInGaN epilayers is determined through the GaN template quality. Based on the analysis of the temperature dependence of the PL peak position, it is found that the localization effect strengthens with increasing In mole fraction due to the larger fluctuations of the In distribution. Increasing the influence of the localized state results in increasing the emission intensity and FWHM with the In content.
Resumo:
High-indium-content InxGa1-xAs/GaAs single/multi-quantum well (SQW/MQW) structures have been systematically investigated. By optimizing the molecular-beam epitaxy growth conditions, the critical thickness of the strained In0.475Ga0.525As/GaAs QWs is raised to 7 nm, which is much higher than the value given by the Matthews and Blakeslee model. The good crystalline quality of the strained InGaAs/GaAs MQWs is proved by x-ray rocking curves. Photoluminescence measurements show that an emission wavelength of 1.25 mum at room temperatures with narrower full width at half maximum less than 30 meV can be obtained. The strain relaxation mechanism is discussed using the Matthews-Blakeslee model. (C) 2004 American Institute of Physics.
Microstructural and compositional characteristics of GaN films grown on a ZnO-buffered Si(111) wafer
Resumo:
Polycrystalline GaN thin films have been deposited epitaxially on a ZnO-buffered (111)-oriented Si substrate by molecular beam epitaxy. The microstructural and compositional characteristics of the films were studied by analytical transmission electron microscopy (TEM). A SiO2 amorphous layer about 3.5 nm in thickness between the Si/ZnO interface has been identified by means of spatially resolved electron energy loss spectroscopy. Cross-sectional and plan-view TEM investigations reveal (GaN/ZnO/SiO2/Si) layers exhibiting definite a crystallographic relationship: [111](Si)//[111](ZnO)//[0001](GaN) along the epitaxy direction. GaN films are polycrystalline with nanoscale grains (similar to100 nm in size) grown along [0001] direction with about 20degrees between the (1 (1) over bar 00) planes of adjacent grains. A three-dimensional growth mode for the buffer layer and the film is proposed to explain the formation of the as-grown polycrystalline GaN films and the functionality of the buffer layer. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Er photoluminescence (Er PL) and dangling bonds (DBs) of annealed Er-doped hydrogenated amorphous silicon nitride (a-SiN:H(Er)) with various concentrations of nitrogen are studied in the temperature range 62-300 K. Post-annealing process is employed to change the DBs density of a-SiN:H(Er). PL spectra, DBs density and H, N concentrations are measured. The intensity of Er PL displays complicated relation with Si DBs density within the annealing temperature range 200-500 degreesC. The intensity of Er PL first increases with decreasing density of Si dangling bonds owing to the structural relaxation up to 250 degreesC, and continues to increase up to 350 degreesC even though the density of Si DBs increases due to the improvement of symmetry environment of Er3+. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
GaN nanowires have been grown with and without In as an additional source. The effects of In surfactant on the crystal quality and photoluminescence property of GaN nanowires are reported for the first time. X-ray diffraction, field emission scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive x-ray spectroscopy, and photoluminescence measurements are employed to analyse the products. The results show that introducing a certain amount of In surfactant during the growth process can improve the crystal quality of the GaN nanowires, and enhance the photolurainescence of them. In addition, the as-prepared GaN nanowires have the advantage of being easy to be separated, which will benefit the subsequent nanodevice fabrication.
Resumo:
High structural and optical quality 1.3 mu m GaInNAs/GaAs quantum well (QW) samples with higher (42.5%) indium content were successfully grown by molecular-beam epitaxy. The cross-sectional transmission electron microscopy measurements reveal that there are no structural defects in such high indium content QWs. The room-temperature photoluminescence peak intensity of the GaIn0.425NAs/GaAs (6 nm/20 nm) 3QW is higher than, and the full width at half maximum is comparable to, that of In0.425GaAs/GaAs 3QW, indicating improved optical quality caused by strain compensation effect of introducing N to the high indium content InGaAs epilayer. (C) 2005 American Institute of Physics.
Resumo:
To investigate the effect of radiation damage on the stability and the compressive stress of cubic boron nitride (c-BN) thin films, c-BN films with various crystalline qualities prepared by dual beam ion assisted deposition were irradiated at room temperature with 300 keV Ar+ ions over a large fluence range up to 2 x 10(16) cm(-2). Fourier transform infrared spectroscopy (FTIR) data were taken before and after each irradiation step. The results show that the c-BN films with high crystallinity are significantly more resistant against medium-energy bombardment than those of lower crystalline quality. However, even for pure c-BN films without any sp(2)-bonded BN, there is a mechanism present, which causes the transformation from pure c-BN to h-BN or to an amorphous BN phase. Additional high resolution transmission electron microscopy (HRTEM) results support the conclusion from the FTIR data. For c-BN films with thickness smaller than the projected range of the bombarding Ar ions, complete stress relaxation was found for ion fluences approaching 4 x 10(15) cm(-2). This relaxation is accompanied, however, by a significant increase of the width of c-BN FTIR TO-line. This observation points to a build-up of disorder and/or a decreasing average grain size due to the bombardment. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Long-wavelength high indium content InxGa1-xAs/GaAs single/multi quantum wells (QWs) structures have been successfully grown by molecular beam epitaxy. It is evidenced by X-ray measurements that the critical thickness of the well width of InxGa1-xAs/GaAs QWs with an indium content x of 47.5% can be raised up to 7nm without strain relation. 1.25μ m photoluminescence (PL) emission is obtained from the QWs with narrower full-width at half maximum (FWHM) less than 30meV. Our results are important basements which are useful for further fabricating GaAs-based long-wavelength devices. © 2005 Elsevier B.V. All rights reserved.
Resumo:
GaN nanotip triangle pyramids were synthesized on 3C-SiC epilayer via an isoelectronic In-doping technique. The synthesis was carried out in a specially designed two-hot-boat chemical vapor deposition system. In (99.999%) and molten Ga (99.99%) with a mass ratio of about 1:4 were used as the source, and pieces of Si (111) wafer covered with 400-500 nm 3C-SiC epilayer were used as the substrates. The products were analyzed by x-ray diffraction, field emission scanning electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction, Raman spectroscopy, and photoluminescence measurements. Our results show that the as-synthesized GaN pyramids are perfect single crystal with wurtzite structure, which may have potential applications in electronic/photonic devices.
Resumo:
Bi4Ti3O12 (BTO) and Bi3.25In0.75Ti3O12 (BTO:In) thin films were prepared on fused quartz and LaNiO3/Si (LNO) substrates by chemical solution deposition (CSD). Their microstructures, ferroelectric and optical properties were investigated by X-ray diffraction, scanning electron microscope, ferroelectric tester and UV-visible-NIR spectrophotometer, respectively. The optical band-gaps of the films were found to be 3.64 and 3.45 eV for the BTO and BTO:In films, respectively. Optical constants (refractive indexes and extinction coefficients) were determined from the optical transmittance spectra using the envelope method. Following the single electronic oscillator model, the single oscillator energy E-0, the dispersion energy E-d, the average interband oscillator wavelength lambda(0), the average oscillator strength S-0, the refractive index dispersion parameter (E-0/S-0), the chemical bonding quantity beta, and the long wavelength refractive index n(infinity) were obtained and analyzed. Both the refractive index and extinction coefficient of the BTO:In films are smaller than those of the BTO films. Furthermore, the refractive index dispersion parameter (E-0/S-0) increases and the chemical bonding quantity beta decreases in the BTO and BTO:In films compared with those of bulk. (C) 2007 Published by Elsevier B.V.