787 resultados para FUZZY INFERENCE SYSTEM
Resumo:
Land cover mappings represent important tools for the regional planning. However, the current mappings are related to very specific purposes and, consequently, they are limited in their capacity to define the wide variety of existing types of land cover. In that context, this paper aims at developing a wide and including hierarchical classification system for land cover mapping in regional scale, which should contribute for a future standardization of classes. Besides, it is intended to test that system for a study case that contemplates the use of a classification method based on fuzzy approach, which has shown to be more appropriate than conventional approaches. Therefore, it was proposed a hierarchical classification system with three detailing levels and a study case was defined with the specification of the test area and of the classification project. Then, the georreferencing of a TM/Landsat-5 image that comprises the test area was carried out. Later, it was applied a fuzzy classification approach in the TM/Landsat-5 image, starting from images of probability for the mapped classes and an uncertainty image were generated. Finally, it was produced a conventional output that represents the thematic mapping of the test area.
Resumo:
In almost all cases, the goal of the design of automatic control systems is to obtain the parameters of the controllers, which are described by differential equations. In general, the controller is artificially built and it is possible to update its initial conditions. In the design of optimal quadratic regulators, the initial conditions of the controller can be changed in an optimal way and they can improve the performance of the controlled system. Following this idea, a LNU-based design procedure to update the initial conditions of PI controllers, considering the nonlinear plant described by Takagi-Sugeno fuzzy models, is presented. The importance of the proposed method is that it also allows other specifications, such as, the decay rate and constraints on control input and output. The application in the control of an inverted pendulum illustrates the effectively of proposed method.
Resumo:
Neste trabalho é proposta uma metodologia de rastreamento de sinais e rejeição de distúrbios aplicada a sistemas não-lineares. Para o projeto do sistema de rastreamento, projeta-se os controladores fuzzy M(a) e N(a) que minimizam o limitante superior da norma H∞ entre o sinal de referência r(t) e o sinal de erro de rastreamento e(t), sendo e(t) a diferença entre a entrada de referência e a saída do sistema z(t). No método de rejeição de distúrbio utiliza-se a realimentação dinâmica da saída através de um controlador fuzzy Kc(a) que minimiza o limitante superior da norma H∞ entre o sinal de entrada exógena w(t) e o sinal de saída z(t). O procedimento de projeto proposto considera as não-linearidades da planta através dos modelos fuzzy Takagi-Sugeno. Os métodos são equacionados utilizando-se inequações matriciais lineares (LMIs), que quando factíveis, podem ser facilmente solucionados por algoritmos de convergência polinomial. Por fim, um exemplo ilustra a viabilidade da metodologia proposta.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Despite the emergence of other forms of artificial lift, sucker rod pumping systems remains hegemonic because of its flexibility of operation and lower investment cost compared to other lifting techniques developed. A successful rod pumping sizing necessarily passes through the supply of estimated flow and the controlled wear of pumping equipment used in the mounted configuration. However, the mediation of these elements is particularly challenging, especially for most designers dealing with this work, which still lack the experience needed to get good projects pumping in time. Even with the existence of various computer applications on the market in order to facilitate this task, they must face a grueling process of trial and error until you get the most appropriate combination of equipment for installation in the well. This thesis proposes the creation of an expert system in the design of sucker rod pumping systems. Its mission is to guide a petroleum engineer in the task of selecting a range of equipment appropriate to the context provided by the characteristics of the oil that will be raised to the surface. Features such as the level of gas separation, presence of corrosive elements, possibility of production of sand and waxing are taken into account in selecting the pumping unit, sucker-rod strings and subsurface pump and their operation mode. It is able to approximate the inferente process in the way of human reasoning, which leads to results closer to those obtained by a specialist. For this, their production rules were based on the theory of fuzzy sets, able to model vague concepts typically present in human reasoning. The calculations of operating parameters of the pumping system are made by the API RP 11L method. Based on information input, the system is able to return to the user a set of pumping configurations that meet a given design flow, but without subjecting the selected equipment to an effort beyond that which can bear
Resumo:
In this work, we propose a two-stage algorithm for real-time fault detection and identification of industrial plants. Our proposal is based on the analysis of selected features using recursive density estimation and a new evolving classifier algorithm. More specifically, the proposed approach for the detection stage is based on the concept of density in the data space, which is not the same as probability density function, but is a very useful measure for abnormality/outliers detection. This density can be expressed by a Cauchy function and can be calculated recursively, which makes it memory and computational power efficient and, therefore, suitable for on-line applications. The identification/diagnosis stage is based on a self-developing (evolving) fuzzy rule-based classifier system proposed in this work, called AutoClass. An important property of AutoClass is that it can start learning from scratch". Not only do the fuzzy rules not need to be prespecified, but neither do the number of classes for AutoClass (the number may grow, with new class labels being added by the on-line learning process), in a fully unsupervised manner. In the event that an initial rule base exists, AutoClass can evolve/develop it further based on the newly arrived faulty state data. In order to validate our proposal, we present experimental results from a level control didactic process, where control and error signals are used as features for the fault detection and identification systems, but the approach is generic and the number of features can be significant due to the computationally lean methodology, since covariance or more complex calculations, as well as storage of old data, are not required. The obtained results are significantly better than the traditional approaches used for comparison
Resumo:
Atualmente, há diferentes definições de implicações fuzzy aceitas na literatura. Do ponto de vista teórico, esta falta de consenso demonstra que há discordâncias sobre o real significado de "implicação lógica" nos contextos Booleano e fuzzy. Do ponto de vista prático, isso gera dúvidas a respeito de quais "operadores de implicação" os engenheiros de software devem considerar para implementar um Sistema Baseado em Regras Fuzzy (SBRF). Uma escolha ruim destes operadores pode implicar em SBRF's com menor acurácia e menos apropriados aos seus domínios de aplicação. Uma forma de contornar esta situação e conhecer melhor os conectivos lógicos fuzzy. Para isso se faz necessário saber quais propriedades tais conectivos podem satisfazer. Portanto, a m de corroborar com o significado de implicação fuzzy e corroborar com a implementação de SBRF's mais apropriados, várias leis Booleanas têm sido generalizadas e estudadas como equações ou inequações nas lógicas fuzzy. Tais generalizações são chamadas de leis Boolean-like e elas não são comumente válidas em qualquer semântica fuzzy. Neste cenário, esta dissertação apresenta uma investigação sobre as condições suficientes e necessárias nas quais três leis Booleanlike like — y ≤ I(x, y), I(x, I(y, x)) = 1 e I(x, I(y, z)) = I(I(x, y), I(x, z)) — se mantém válidas no contexto fuzzy, considerando seis classes de implicações fuzzy e implicações geradas por automorfismos. Além disso, ainda no intuito de implementar SBRF's mais apropriados, propomos uma extensão para os mesmos
Resumo:
In this work, we deal with a micro electromechanical system (MEMS), represented by a micro-accelerometer. Through numerical simulations, it was found that for certain parameters, the system has a chaotic behavior. The chaotic behaviors in a fractional order are also studied numerically, by historical time and phase portraits, and the results are validated by the existence of positive maximal Lyapunov exponent. Three control strategies are used for controlling the trajectory of the system: State Dependent Riccati Equation (SDRE) Control, Optimal Linear Feedback Control, and Fuzzy Sliding Mode Control. The controls proved effective in controlling the trajectory of the system studied and robust in the presence of parametric errors.
Resumo:
O objetivo do artigo foi avaliar o uso da lógica fuzzy para estimar possibilidade de óbito neonatal. Desenvolveu-se um modelo computacional com base na teoria dos conjuntos fuzzy, tendo como variáveis peso ao nascer, idade gestacional, escore de Apgar e relato de natimorto. Empregou-se o método de inferência de Mamdani, e a variável de saída foi o risco de morte neonatal. Criaram-se 24 regras de acordo com as variáveis de entrada, e a validação do modelo utilizou um banco de dados real de uma cidade brasileira. A acurácia foi estimada pela curva ROC; os riscos foram comparados pelo teste t de Student. O programa MATLAB 6.5 foi usado para construir o modelo. Os riscos médios foram menores para os que sobreviveram (p < 0,001). A acurácia do modelo foi 0,90. A maior acurácia foi com possibilidade de risco igual ou menor que 25% (sensibilidade = 0,70, especificidade = 0,98, valor preditivo negativo = 0,99 e valor preditivo positivo = 0,22). O modelo mostrou acurácia e valor preditivo negativo bons, podendo ser utilizado em hospitais gerais.
Resumo:
O surgimento de novas tecnologias e serviços vem impondo mudanças substanciais ao tradicional sistema de telecomunicações. Múltiplas possibilidades de evolução do sistema fazem da etapa de planejamento um procedimento não só desejável como necessário, principalmente num ambiente de competitividade. A utilização de metodologias abrangentes e flexíveis que possam auxiliar no processo de decisão, fundadas em modelos de otimização, parece um caminho inevitável. Este artigo propõe um modelo de programação linear inteiro misto para ajudar no planejamento estratégico de sistemas de telecomunicações, e em particular da rede de acesso. Os principais componentes de custo e receita são identificados e o modelo é desenvolvido para determinar a configuração da rede (serviços, tecnologias, etc) que maximize a receita esperada pelo operador do sistema. O conceito de números fuzzy é adotado para avaliar o risco técnico-econômico em situações de imprecisão nos dados de demanda. Resultados de experimentos computacionais são apresentados e discutidos.
Resumo:
The crossflow filtration process differs of the conventional filtration by presenting the circulation flow tangentially to the filtration surface. The conventional mathematical models used to represent the process have some limitations in relation to the identification and generalization of the system behavior. In this paper, a system based on fuzzy logic systems is developed to overcome the problems usually found in the conventional mathematical models. Imprecisions and uncertainties associated with the measurements made on the system are automatically incorporated in the fuzzy approach. Simulation results are presented to justify the validity of the proposed approach.
Resumo:
The papers shows, through theoretical studies and simulations, that using the description of the plant by Takagi-Sugeno (T-S), it is possible to design a nonlinear controller to control the position of the leg of a paraplegic patient. The control system was designed to change the angle of the joint knee of 60 degrees. This is the first study that describes the application of Takagi-Sugeno (T-S) models in this kind of problem.
Resumo:
This work presents a simplified architecture of a neurofuzzy controller for general purpose applications that tries to minimize the processing used in the several stages of hazy modeling of systems. The basic procedures of fuzzification and defuzzification are simplified to the maximum while the inference procedures are computed in a private way. The simplified architecture allows a fast and easy configuration of the neurofuzzy controller and the structuring rules that define the control actions is automatic. Th controller's Limits and performance are standardized and the control actions are previously calculated. For application, the industrial systems of fluid flow control will be considered.
Resumo:
This work presents the design of a fuzzy controller with simplified architecture. This architecture tries to minimize the time processing used in? the several stages of hazy modeling of systems and processes. The basic procedures of fuzzification and defuzzification are simplified to the maximum while the inference procedures are computed in private way. Therefore, the simplified architecture allows a fast and easy configuration of the fuzzy controller.All rules that define the control actions are determined by inference procedures and the defuzzification is made automatically using a simplified algorithm. The fuzzy controller operation is standardized and the control actions are previously calculated For general-purpose application? ann results, the industrial systems of fluid pow cona ol will be considered.