601 resultados para Estimators


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Biometria - IBB

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Matemática Universitária - IGCE

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The James-Stein estimator is a biased shrinkage estimator with uniformly smaller risk than the risk of the sample mean estimator for the mean of multivariate normal distribution, except in the one-dimensional or two-dimensional cases. In this work we have used more heuristic arguments and intensified the geometric treatment of the theory of James-Stein estimator. New type James-Stein shrinking estimators are proposed and the Mahalanobis metric used to address the James-Stein estimator. . To evaluate the performance of the estimator proposed, in relation to the sample mean estimator, we used the computer simulation by the Monte Carlo method by calculating the mean square error. The result indicates that the new estimator has better performance relative to the sample mean estimator.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments using factorial arrangement of treatments are rather common and useful in agricultural research. The main advantage is the possibility of testing many hypotheses, allowing broader conclusions over different factors, studied simultaneously. Factorial arrangements are used to compare levels of each factor (main effects), and also to verify if the differences among levels of a given factor are dependent on the levels of the other factors (interacions). In the analysis of data from factorial experiments, difficulty is increased when additional treatments are included. Inclusion of one or more additional treatments is a quite common practice, since such treatments are usually taken as reference or standard for evaluation and comparasion of the remaimng treatments, or aiming complementary information. This increase of difficulty is however low, compared to the advantages. As in literature there are few references about the statistical analysis of factorial experiments with additonal treatments, and given straightforward use in experimentation, the objective of this work was the presentation of approach for the use of factorial experiments with additonal treatments trough the analysis of some examples using the SAS® software, with the corresponding theoretical development, obtaining the system of normal equations, estimators of the parameters and variance of contrasts among two treatment means. It is suggested that additional treatments should be used with caution. The analysis of variance of such kind of experiment was presented using matrix notation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho utilizou os dados de precipitação do período de janeiro de 2000 a setembro de 2007 da torre micrometeorológica localizada na Estação Científica Ferreira Pena (ECFP) em Caxiuanã e foram comparados com o algoritmo 3B42 que combina dados de satélites no canal de microoondas para ajustar aqueles do canal infravermelho. Adicionalmente foi feita uma análise da distribuição temporal e espacial da precipitação na Amazônia Oriental utilizando os dados de cinco algoritmos estimadores de precipitação: O Geostationary Environmental SalellitePrecipitation lndex (GPI); o 3B42; 3A12 e 3A25 que são os algoritmos provenientes dos sensores de microondas e do radar meteorológico à bordo do satélite Tropical Rainfall MeasuringMission (TRMM); e o Global Precipitation Climatology Center (GPCC) de janeiro de 1998 a dezembro de 2007. A comparação entre o algoritmo 3B42 com os dados do pluviógrafo da torre mostrou que o estimador 3B42 superestima a precipitação em relação aos dados da torre para todo o período de estudo. Os períodos mais chuvosos foram os trimestres de março-abril-maio (MAM) e dezembro-janeiro-feveireiro (DJF) e os períodos menos chuvosos foram setembro-outubro-novembro (SON) e junho-julho-agosto (JJA). Esta sazonalidade da precipitação se apresenta principalmente devido à influência da Zona de Convergência Intertropical (ZCIT), que contribui de maneira apreciável para a modulação da estação chuvosa na região. A comparação trimestral entre o algoritmo 3B42 e pluviógrafo da torre, mostra que o algoritmo 3B42 superestimou (subestimou) a precipitação em relação ao pluviógrafo em MAM e JJA (DJF e SON); e DJF é o trimestre que apresenta as estimativas de precipitação com valores mais aproximados a precipitação medida na torre micrometeorológica de Caxiuanã. Na média mensal o 3B42 subestima a precipitação de outubro a janeiro e superestima em relação as dados medidos na torre, de março a agosto. O algoritmo3B42 superestimou (subestimou) a precipitação noturna (matutina e vespertina) do ciclo diurno em relação ao pluviógrafo da torre, nas vizinhanças de Caxiuanã. No entanto ambos estimadores mostraram que em média o horário de maior precipitação é por volta das 1800hora local (HL). Além disso, as análises do ciclo diurno médio sazonal indicam que em DJF nos horários de 0900 HL, 1500 HL e 1800HL têm os valores de precipitação estimada pelo algoritmo3B42 mais aproximados aos valores da precipitação medida pontualmente em Caxiuanã. Os meses de novembro a fevereiro têm um máximo principal de precipitação no período vespertino, tanto na torre como no algoritmo 3B42. No período de maio à julho o horário os máximos diurnos de precipitação passam do período da tarde para os da noite e madrugada,modificando o ciclo diurno em comparação aos demais meses. A comparação entre os cinco algoritmos na Amazônia Oriental mostrou diferentes comportamentos entre os estimadores. O algoritmo GPI subestimou s precipitação em relação aos demais algoritmos na região costeira do Amapá e Guiana Francesa e superestimou na região central da Amazônia. Tanto o algoritmo 3A12 quanto o 3A25 apresentaram menor precipitação que os demais algoritmos. O algoritmo 3842, por ser uma combinação de várias estimativas baseadas no canal de microondas e infravermelho, apresenta padrões semelhantes a Figueroa e Nobre (1990). No entanto, o GPCC mostra menos detalhes na distribuição espacial de precipitação nos lugares onde não há pluviômetros como, por exemplo, no Noroeste do Pará. As diferenças entre os algoritmos aqui considerados podem estar relacionados com as características de cada algoritmo e/ou a metodologia empregada. As comparações pontuais de precipitação de um pluviômetro com a média numa área com dados provenientes de satélites podem ser a explicação para as diferenças entre os estimadores nos trimestres ou ciclo diurno. No entanto não se descartam que essas diferenças sejam devidas à diferente natureza da precipitação entre as subregiões, assim como a existência de diferentes sistemas que modulam o ciclo diurno da precipitação na Amazônia Oriental.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta dissertação apresenta uma técnica para detecção e diagnósticos de faltas incipientes. Tais faltas provocam mudanças no comportamento do sistema sob investigação, o que se reflete em alterações nos valores dos parâmetros do seu modelo matemático representativo. Como plataforma de testes, foi elaborado um modelo de um sistema industrial em ambiente computacional Matlab/Simulink, o qual consiste em uma planta dinâmica composta de dois tanques comunicantes entre si. A modelagem dessa planta foi realizada através das equações físicas que descrevem a dinâmica do sistema. A falta, a que o sistema foi submetido, representa um estrangulamento gradual na tubulação de saída de um dos tanques. Esse estrangulamento provoca uma redução lenta, de até 20 %, na seção desse tubo. A técnica de detecção de falta foi realizada através da estimação em tempo real dos parâmetros de modelos Auto-regressivos com Entradas Exógenas (ARX) com estimadores Fuzzy e de Mínimos Quadrados Recursivos. Já, o diagnóstico do percentual de entupimento da tubulação foi obtido por um sistema fuzzy de rastreamento de parâmetro, realimentado pela integral do resíduo de detecção. Ao utilizar essa metodologia, foi possível detectar e diagnosticar a falta simulada em três pontos de operação diferentes do sistema. Em ambas as técnicas testadas, o método de MQR teve um bom desempenho, apenas para detectar a falta. Já, o método que utilizou estimação com supervisão fuzzy obteve melhor desempenho, em detectar e diagnosticar as faltas aplicadas ao sistema, constatando a proposta do trabalho.