867 resultados para Embedded devices
Resumo:
In this article, we explore the possibility of modifying the silicon nanocrystal areal density in SiOx single layers, while keeping constant their size. For this purpose, a set of SiOx monolayers with controlled thickness between two thick SiO2 layers has been fabricated, for four different compositions (x=1, 1.25, 1.5, or 1.75). The structural properties of the SiO x single layers have been analyzed by transmission electron microscopy (TEM) in planar view geometry. Energy-filtered TEM images revealed an almost constant Si-cluster size and a slight increase in the cluster areal density as the silicon content increases in the layers, while high resolution TEM images show that the size of the Si crystalline precipitates largely decreases as the SiO x stoichiometry approaches that of SiO2. The crystalline fraction was evaluated by combining the results from both techniques, finding a crystallinity reduction from 75% to 40%, for x = 1 and 1.75, respectively. Complementary photoluminescence measurements corroborate the precipitation of Si-nanocrystals with excellent emission properties for layers with the largest amount of excess silicon. The integrated emission from the nanoaggregates perfectly scales with their crystalline state, with no detectable emission for crystalline fractions below 40%. The combination of the structural and luminescence observations suggests that small Si precipitates are submitted to a higher compressive local stress applied by the SiO2 matrix that could inhibit the phase separation and, in turn, promotes the creation of nonradiative paths.
Resumo:
We analyze the behavior of complex information in the Fresnel domain, taking into account the limited capability to display complex values of liquid crystal devices when they are used as holographic displays. To do this analysis we study the reconstruction of Fresnel holograms at several distances using the different parts of the complex distribution. We also use the information adjusted with a method that combines two configurations of the devices in an adding architecture. The results of the error analysis show different behavior for the reconstructions when using the different methods. Simulated and experimental results are presented.
Resumo:
Quartz Tuning Fork (QTF)-based Scanning Probe Microscopy (SPM) is an important field of research. A suitable model for the QTF is important to obtain quantitative measurements with these devices. Analytical models have the limitation of being based on the double cantilever configuration. In this paper, we present an electromechanical finite element model of the QTF electrically excited with two free prongs. The model goes beyond the state-of-the-art of numerical simulations currently found in the literature for this QTF configuration. We present the first numerical analysis of both the electrical and mechanical behavior of QTF devices. Experimental measurements obtained with 10 units of the same model of QTF validate the finite element model with a good agreement.
Resumo:
Mobile technologies have brought about major changes in police equipment and police work. If a utopian narrative remains strongly linked to the adoption of new technologies, often formulated as 'magic bullets' to real occupational problems, there are important tensions between their 'imagined' outcomes and the (unexpected) effects that accompany their daily 'practical' use by police officers. This article offers an analysis of police officers' perceptions and interactions with security devices. In so doing, it develops a conceptual typology of strategies for coping with new technology inspired by Le Bourhis and Lascoumes: challenging, neutralizing and diverting. To that purpose, we adopt an ethnographic approach that focuses on the discourses, practices and actions of police officers in relation to three security devices: the mobile digital terminal, the mobile phone and the body camera. Based on a case study of a North American municipal police department, the article addresses how these technological devices are perceived and experienced by police officers on the beat.
Resumo:
Rakennusprojekteissa yksi haastava osa-alue on laadunvarmistus: Suomen elementtitehtailla se tapahtuu tällä hetkellä käsityöllä, eikä automaatiota käytetä. Lappeenrannan teknillisen yliopiston Mobilding-hankkeessa rakennuselementteihin upotetaan radiotunnisteita, joiden avulla elementit voidaan tunnistaa langattomasti ja yksilöllisesti, sekä yhdistää tietojärjestelmän tietoon. Käyttäen hyväksi kykyä tunnistaa elementit sähköisesti, tässä diplomityössä keskitytään ratkaisemaan laadunvarmistuksen haastetta automatisoimalla prosessia. Työssä kartoitetaan laadunvarmistuksen nykytila rakennusteollisuudessa ja sen pohjalta suunnitellaan ja tuotetaan laadunvarmistusjärjestelmä. Toteutettava järjestelmä kykenee havainnoimaan poikkeuksia reaktiona käyttäjien syötteeseen ja valvomaan projektin aikataulutusta käyttäen hyväksi elementtien tilatietoja. Havaituista poikkeuksista tiedotetaan automaattisesti. Järjestelmään toteutetaan rajapinta Web Service-teknologioilla, jolloin sitä voidaan käyttää matkapuhelimella. Työn tuloksena saatavaa järjestelmää testataan pilottihankkeissa ja siitä saadaan pohja laadunvarmistuksen jatkokehitykselle.
Resumo:
As the development of integrated circuit technology continues to follow Moore’s law the complexity of circuits increases exponentially. Traditional hardware description languages such as VHDL and Verilog are no longer powerful enough to cope with this level of complexity and do not provide facilities for hardware/software codesign. Languages such as SystemC are intended to solve these problems by combining the powerful expression of high level programming languages and hardware oriented facilities of hardware description languages. To fully replace older languages in the desing flow of digital systems SystemC should also be synthesizable. The devices required by modern high speed networks often share the same tight constraints for e.g. size, power consumption and price with embedded systems but have also very demanding real time and quality of service requirements that are difficult to satisfy with general purpose processors. Dedicated hardware blocks of an application specific instruction set processor are one way to combine fast processing speed, energy efficiency, flexibility and relatively low time-to-market. Common features can be identified in the network processing domain making it possible to develop specialized but configurable processor architectures. One such architecture is the TACO which is based on transport triggered architecture. The architecture offers a high degree of parallelism and modularity and greatly simplified instruction decoding. For this M.Sc.(Tech) thesis, a simulation environment for the TACO architecture was developed with SystemC 2.2 using an old version written with SystemC 1.0 as a starting point. The environment enables rapid design space exploration by providing facilities for hw/sw codesign and simulation and an extendable library of automatically configured reusable hardware blocks. Other topics that are covered are the differences between SystemC 1.0 and 2.2 from the viewpoint of hardware modeling, and compilation of a SystemC model into synthesizable VHDL with Celoxica Agility SystemC Compiler. A simulation model for a processor for TCP/IP packet validation was designed and tested as a test case for the environment.
Resumo:
This thesis evaluates methods for obtaining high performance in applications running on the mobile Java platform. Based on the evaluated methods, an optimization was done to a Java extension API running on top the Symbian operating system. The API provides location-based services for mobile Java applications. As a part of this thesis, the JNI implementation in Symbian OS was also benchmarked. A benchmarking tool was implemented in the analysis phase in order to implement extensive performance test set. Based on the benchmark results, it was noted that the landmarks implementation of the API was performing very slowly with large amounts of data. The existing implementation proved to be very inconvenient for optimization because the early implementers did not take performance and design issues into consideration. A completely new architecture was implemented for the API in order to provide scalable landmark initialization and data extraction by using lazy initialization methods. Additionally, runtime memory consumption was also an important part of the optimization. The improvement proved to be very efficient based on the measurements after the optimization. Most of the common API use cases performed extremely well compared to the old implementation. Performance optimization is an important quality attribute of any piece of software especially in embedded mobile devices. Typically, projects get into trouble with performance because there are no clear performance targets and knowledge how to achieve them. Well-known guidelines and performance models help to achieve good overall performance in Java applications and programming interfaces.
Resumo:
The objective of this study has been to make a profitability analysis of service contracts for a company in Finland. The purpose has been to see how profitable the contracts are and if there possibly were some things to change or develop in the contracts. Allocation rules of cost accounting, service costs both profitability and management of services have been considered in the theory part. All the service contracts that have been valid at least three last accounting periods have been included in the study. All direct costs relating to the contracts have been collected and indirect costs have been assigned to the contracts. Profitability of the contracts has been calculated over three years. Results have been analyzed according to the key figures the company is controlling. Some suggestions for developments have been given at the end of the study. The study has shown differences between the contracts. Part of them has turned out to be like the profitability aims of the company and part less profitable. The study has shown that many factors have an effect on the profitability of the service contracts.
Resumo:
Les pistolets à impulsion électrique (PIE) sont de plus en plus fréquemment utilisés en Europe ces dernières années, le modèle le plus connu étant le Taser®. Les connaissances scientifiques concernant les PIE et leurs effets potentiels restent toutefois limitées. Nous avons conduit une revue de littérature afin d'évaluer les implications potentielles de leur utilisation en termes de sécurité, de morbidité et de mortalité. Une exposition unique chez un individu sain peut généralement être considérée comme peu dangereuse. Les sujets à risque de complications sont les individus exposés à de multiples décharges, les personnes sous l'influence de substances psychoactives, ceux qui montrent des signes d'agitation extrême, ou encore les individus présentant des comorbidités médicales. L'éventail des complications pouvant survenir lors de leur exposition est large et inclut les lésions provoquées par les impacts des électrodes, les traumatismes liés à la chute induite par la paralysie transitoire ou des complications cardiovasculaires. Dans ce contexte, les personnes exposées doivent être examinées attentivement, et les éventuelles lésions traumatiques doivent être exclues. The use of electronic control devices (ECD), such as the Taser®, has increased in Europe over the past decade. However, scientific data concerning the potential health impact of ECD usage remains limited. We reviewed the scientific literature in order to evaluate the safety, mortality, and morbidity associated with ECD use. Exposure of a healthy individual to a single ECD electroshock can be considered generally safe. Complications can, however, occur if the patient is subject to multiple electroshocks, if the patient has significant medical comorbidities, or when exposure is associated with drug abuse or agitated delirium. The broad spectrum of potential complications associated with ECD exposure includes direct trauma caused by the ECD electrodes, injuries caused by the transient paralysis-induced fall, and cardiovascular events. An ECD-exposed patient requires careful examination during which traumatic injuries are actively sought out.
Resumo:
In the health domain, the field of rehabilitation suffers from a lack specialized staff while hospital costs only increase. Worse, almost no tools are dedicated to motivate patients or help the personnel to carry out monitoring of therapeutic exercises. This paper demonstrates the high potential that can bring the virtual reality with a platform of serious games for the rehabilitation of the legs involving a head-mounted display and haptic robot devices. We first introduce SG principles and the current context regarding rehabilitation interventions followed by the description of an original haptic device called Lambda Health System. The architecture of the model is then detailed, including communication specifications showing that lag is imperceptible for user (60Hz). Finally, four serious games for rehabilitation using haptic robots and/or HMD were tested by 33 health specialists.
Resumo:
The majority of transcatheter aortic valve implantations, structural heart procedures and the newly developed transcatheter mitral valve repair and replacement are traditionally performed either through a transfemoral or a transapical access site, depending on the presence of severe peripheral vascular disease or anatomic limitations. The transapical approach, which carries specific advantages related to its antegrade nature and the short distance between the introduction site and the cardiac target, is traditionally performed through a left anterolateral mini-thoracotomy and requires rib retractors, soft tissue retractors and reinforced apical sutures to secure, at first, the left ventricular apex for the introduction of the stent-valve delivery systems and then to seal the access site at the end of the procedure. However, despite the advent of low-profile apical sheaths and newly designed delivery systems, the apical approach represents a challenge for the surgeon, as it has the risk of apical tear, life-threatening apical bleeding, myocardial damage, coronary damage and infections. Last but not least, the use of large-calibre stent-valve delivery systems and devices through standard mini-thoracotomies compromises any attempt to perform transapical transcatheter structural heart procedures entirely percutaneously, as happens with the transfemoral access site, or via a thoracoscopic or a miniaturised video-assisted percutaneous technique. During the past few years, prototypes of apical access and closure devices for transapical heart valve procedures have been developed and tested to make this standardised successful procedure easier. Some of them represent an important step towards the development of truly percutaneous transcatheter transapical heart valve procedures in the clinical setting.
Resumo:
This thesis deals with a hardware accelerated Java virtual machine, named REALJava. The REALJava virtual machine is targeted for resource constrained embedded systems. The goal is to attain increased computational performance with reduced power consumption. While these objectives are often seen as trade-offs, in this context both of them can be attained simultaneously by using dedicated hardware. The target level of the computational performance of the REALJava virtual machine is initially set to be as fast as the currently available full custom ASIC Java processors. As a secondary goal all of the components of the virtual machine are designed so that the resulting system can be scaled to support multiple co-processor cores. The virtual machine is designed using the hardware/software co-design paradigm. The partitioning between the two domains is flexible, allowing customizations to the resulting system, for instance the floating point support can be omitted from the hardware in order to decrease the size of the co-processor core. The communication between the hardware and the software domains is encapsulated into modules. This allows the REALJava virtual machine to be easily integrated into any system, simply by redesigning the communication modules. Besides the virtual machine and the related co-processor architecture, several performance enhancing techniques are presented. These include techniques related to instruction folding, stack handling, method invocation, constant loading and control in time domain. The REALJava virtual machine is prototyped using three different FPGA platforms. The original pipeline structure is modified to suit the FPGA environment. The performance of the resulting Java virtual machine is evaluated against existing Java solutions in the embedded systems field. The results show that the goals are attained, both in terms of computational performance and power consumption. Especially the computational performance is evaluated thoroughly, and the results show that the REALJava is more than twice as fast as the fastest full custom ASIC Java processor. In addition to standard Java virtual machine benchmarks, several new Java applications are designed to both verify the results and broaden the spectrum of the tests.
Resumo:
Context awareness is emerging on mobile devices. Context awareness can be used to improve usability of a mobile device. Context awareness is particularly important on mobile devices due the limitations they have. At first in this work, a literature review on context awareness and mobile environment is made. For aiding context awareness there exist an implementation of a Context Framework for Symbian S60 devices. It provides a possibility for exchanging the contexts inside the device between the client applications of the local Context Framework. The main contribution of this thesis is to design and implement an enhancement to the S60 Context Framework for providing possibility to exchange context over device boundaries. Using the implemented Context Exchange System, the context exchange is neither depending on the type of the context nor the type of the client. In addition, the clients and the contexts can reside on any interconnected device. The usage of the system is independent of the programming language since in addition to using only Symbian C++ function interfaces it can also be utilized using XML scripts. The Meeting Sniffer application, which uses the Context Exchange System, was also developed in this work. Using this application, it is possible to recognize a meeting situation and suggest device profile change to a user.
Resumo:
The objective of this thesis work is to describe the Conceptual Design process of an embedded electronic display device. The work presents the following sub processes: definition of device specifications, introduction to the technological alternatives for system components and their comparison, comparative photometric measurements of selected display panels, and the design and building of a functional concept prototype. This work focuses mainly on electronics design, albeit the mechanical issues and fields of the software architecture that significantly affect the decisions are also discussed when necessary. The VESA Flat Panel Display Measurement (FPDM) 2.0 Standard was applied to the appropriate extent into photometric measurements. The results were analyzed against the requirement standards of a customer-specific display development project. An Active Matrix LCD was selected as the display of concept prototype, but also the excellent visual characteristics of Active Matrix OLED technology were noted. Should the reliability of the OLED products be significantly improved in the future, utilizing such products in the described application must be reconsidered.