376 resultados para Deactivation
Resumo:
Dissertação para a obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Vias de Comunicação e Transportes
Resumo:
The valorization of glycerol has been widely studied notably due to the oversupply of the latter from biodiesel production. Among the different upgrading reactions, dehydration to acrolein is of high interest due to the importance of acrolein as an intermediate for polymer industry (via acrylic acid) and for feed additive (synthon for DL-methionine). It is known that acrolein can be obtained by glycerol catalytic dehydration over acid catalysts. Zeolites and heteropolyacid catalysts are initially highly active, but deactivate rapidly with time on stream by coking, whilst mixed metal oxides are more stable catalytic systems but less selective and in addition they require an activation period. In this talk, the strategy we followed is described. It consisted in a parallel approach in which we developed supported heteropolyacid-based catalysts with increased stability and acrolein selectivity by using a ZrO2-grafted SBA-15 playing the role of the support for silico-tungstic acid active phase, as well as a new concept based on a two zones fluidized bed reactor (TZFBR) to tackle the unavoidable deactivation issue of the HPA catalysts. This type of reactor comprises – in one single capacity – reaction and regeneration zones. In the second part of the lecture the REALCAT platform was introduced. REALCAT (French acronym standing for ‘Advanced High-Throughput Technologies Platform for Biorefineries Catalysts Design’) is an highly integrated platform devoted to the acceleration of innovation in all the fields of industrial catalysis with an emphasis on emergent biorefinery catalytic processes. In this extremely competitive field, REALCAT consists in a versatile High-Throughput Technologies (HTT) platform devoted to innovation in heterogeneous, homogeneous or biocatalysts AND their combinations under the ultra-efficient very novel concept of hybrid catalysis.
Resumo:
heterogeneous catalyst such as a silicoaluminophosphate, molecular sieve with AEL (Aluminophosphate eleven) structure such as SAPO-11, was synthesized through the hydrothermal method starting from silica, pseudoboehmite, orthophosphoric acid (85%) and water, in the presence of a di-isopropylamine organic template. For the preparation of SAPO-11 in a dry basis it was used as reactants: DIPA; H3PO4; SiO4; Pseudoboehmite and distilled water. The crystallization process occurred when the reactive hydrogel was charged into a vessel and autoclaved at 200ºC for a period of 72 hours under autogeneous pressure. The obtained material was washed, dried and calcined to remove the molecular sieves of DIPA. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (FT-IR), nitrogen adsorption (BET) and thermal analysis (TG/DTG). The acidic properties were determined using adsorption of nbutylamine followed by programmed thermodessorption. This method revealed that SAPO-11 shows an acidity that ranges from weak to moderate. However, a small quantity of strong acid sites could be detected there. The deactivation of the catalysts was conducted by artificial coking followed by the cracking of the n-hexane in a fixed bed with a continuous flow micro-reactor coupled on line to a gas chromatograph. The main products obtained were: ethane, propane, isobutene, n-butane, n-pentane and isopentane. The Vyazovkin (model-free) kinetics method was used to determine the regeneration and removal of the coke
Resumo:
Nickel-based catalysts supported on alumina have been widely used in various reactions to obtain synthesis gas or hydrogen. Usually, higher conversion levels are obtained by these catalysts, however, the deactivation by coke formation and sintering of metal particles are still problems to be solved. Several approaches have been employed in order to minimize these problems, among which stands out in recent years the use of additives such as oxides of alkali metals and rare earths. Similarly, the use of methodologies for the synthesis faster, easier, applicable on an industrial scale and to allow control of the microstructural characteristics of these catalysts, can together provide the solution to this problem. In this work, oxides with spinel type structure AB2O4, where A represents divalent cation and B represents trivalent cations are an important class of ceramic materials investigated worldwide in different fields of applications. The nickel cobaltite (NiCo2O4) was oxides of spinel type which has attracted considerable interest due to its applicability in several areas, such as chemical sensors, flat panel displays, optical limiters, electrode materials, pigments, electrocatalysis, electronic ceramics, among others. The catalyst precursor NiCo2O4 was prepared by a new chemical synthesis route using gelatine as directing agent. The polymer resin obtained was calcined at 350°C. The samples were calcined at different temperatures (550, 750 and 950°C) and characterized by X ray diffraction, measurements of specific surface area, temperature programmed reduction and scanning electron microscopy. The materials heat treated at 550 and 750°C were tested in the partial oxidation of methane. The set of techniques revealed, for solid preparations, the presence of the phase of spinel-type structure with the NiCo2O4 NixCo1-xO solid solution. This solid solution was identified by Rietveld refinement at all temperatures of heat treatment. The catalyst precursors calcined at 550 and 750°C showed conversion levels around 25 and 75%, respectively. The reason H2/CO was around 2 to the precursor treated at 750°C, proposed reason for the reaction of partial oxidation of methane, one can conclude that this material can be shown to produce synthesis gas suitable for use in the synthesis Fischer-Tropsch process
Resumo:
In this work, ceramic powders belonging to the system Nd2-xSrxNiO4 (x = 0, 0.4, 0.8, 1.2 and 1.6) were synthesized for their use as catalysts to syngas production partial. It was used a synthesis route, relatively new, which makes use of gelatin as organic precursor. The powders were analyzed at several temperatures in order to obtain the perovskite phase and characterized by several techniques such as thermal analysis, X-rays diffraction, Rietveld refinement method, specific surface area, scanning electron microscopy, energy dispersive spectroscopy of X-rays and temperature programmed reduction. The results obtained using these techniques confirmed the feasibility of the synthesis method employed to obtain nanosized particles. The powders were tested in differential catalytic conditions for dry reforming of methane (DRM) and partial oxidation of methane (POM), then, some systems were chosen for catalytic integrals test for (POM) indicating that the system Nd2-xSrxNiO4 for x = 0, 0.4 and 1.2 calcined at 900 °C exhibit catalytic activity on the investigated experimental conditions in this work without showing signs of deactivation
Resumo:
Nickel-bases catalysts have been used in several reform reactions, such as in the partial oxidation of methane to obtain H2 or syngas (H2 + CO). High levels of conversion are usually obtained using this family of catalysts, however, their deactivation resulting from carbon deposition still remains a challenge. Different approaches have been tested aiming at minimizing this difficulty, including the production of perovskites and related structures using modern synthesis methods capable of producing low cost materials with controlled microstructural characteristics at industrial scale. To establish grounds for comparison, in the present study LaNixFe1-xO3 (x=0, 0.3 or 0.7) perovskites were prepared following the Pechini method and by microwave assisted self-combustion. All samples were sub sequently calcined at 900 °C to obtain the target phase. The resulting ceramic powders were characterized by thermogravimetric analysis, infrared spectroscopy, X ray diffraction, specific area and temperature programmed reduction tests. Calcined samples were also used in the partial oxidation reaction of methane to evaluate the level of conversion, selectivity and carbon deposition. The results showed that the calcined samples were crystalline and the target phase was formed regardless of the synthesis method. According to results obtained by Rietveld refinement, we observed the formation of 70.0% of LaNi0.3Fe0.7O3 and 30.0% of La2O3 for samples LN3F7-900- P, LN3F7-900-M and 41,6% of LaNi0.7Fe0.3O3, 30.7% of La2NiO4 and 27.7% of La2O3 for samples LN7F3-900-P and LN7F3-900-M.Temperature-programmed profiles of the LaNiO3 sample revealed the presence of a peak around 510 °C, whereas the LaFeO3 sample depicted a peak above 1000°C. The highest l evel of methane conversion was obtained for LaNiO3 synthesized by the Pechini method. Overall, catalysts prepared by the Pechini method depicted better conversion levels compared to those produced by microwave assisted self-combustion
Resumo:
We set out to understand the precise mechanisms that regulate the activation and deactivation of Cullin-RING Ligases (CRLs). While a great deal of work has already gone into identifying the players involved in these pathways and the cellular consequences associated with the loss of each, the biochemical mechanisms regulating these steps have remained elusive. In this work we sought to gain a better understanding of the mechanisms behind these steps by teasing apart specific their biochemical reactions. By measuring the individual microscopic rate constants of the reactions we have shed light on both the proper sequence of events in the regulation of CRLs as well as how they are in fact controlled.
Prior to this work, it was believed that CSN deactivated CRLs by binding them and enzymatically removing the activating post-translation modification Nedd8. It was believed that CSN could not bind to CRLs while they were active due to the steric hindrance by the CRL substrates, and that they would remain bound to deneddylated CRLs as a sequestering agent until a new substrate could displace it. We now have some insight that substrates themselves cannot inhibit CSN very well, but that the active ubiquitination by an E2 enzyme precludes CSN binding and activity. When the substrate for a CRL becomes depleted, CSN then binds to the CRL in a low affinity, low activity conformation. This triggers a conformational change that pulls the autoinhibitory Ins-1 loop away from the active site in the catalytic subunit Csn5, resulting in a large increase in affinity and cleavage of the isopeptide bond between CRLs and Nedd8. Upon dissociation of Nedd8, CSN rapidly returns to the low affinity state and dissociates from the CRL, allowing it reenter its activation cycle.
Resumo:
Different types of heterogeneous catalysts of the silicoaluminophosphate type, (SAPO-5, SAPO-11, SAPO-31, SAPO-34 and SAPO-41), molecular sieves with a: AFI, AEL, ATO, CHA and AFO structure, respectively, were synthesized through the hydrothermal method. Using sources such as hydrated alumina (pseudobohemita), phosphoric acid, silica gel, water, as well as, different types of organic structural templates, such as: cetyltrimethylammonium bromide (CTMABr), di-isopropylamine (DIPA), di-n- propylamine (DNPA) and tetraethylammonium hydroxide (TEOS), for the respective samples. During the preparation of the silicoaluminophosphates, the crystallization process of the samples occurred at a temperature of approximately 200 ° C, ranging through periods of 18-72 h, when it was possible to obtain pure phases for the SAPOs. The materials were furthermore washed with deionized water, dried and calcined to remove the molecules of the templates. Subsequently the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), absorption spectroscopy in the infrared region (FT-IR), specific surface area and thermal analysis via TG/DTG. The acidic properties were determined using adsorption of n-butylamine followed by programmed termodessorption. These methods revealed that the SAPO samples showed a typically weak to moderate acidity. However, a small amount of strong acid sites was also detected. The deactivation of the catalysts was conducted by artificially coking the samples, followed by n-hexane cracking reactions in a fixed bed with a continuous flow micro-reactor coupled on line to a gas chromatograph. The main products obtained were: ethane, propane, isobutene, n-butane, n-pentane and isopentane. The Vyazovkin (model-free) kinetics method was used to determine the catalysts regeneration and removal of the coke
Resumo:
Dissertação para obtenção do grau de Mestre em Arquitectura, apresentada na Universidade de Lisboa - Faculdade de Arquitectura.
Resumo:
The development of technologies for the recycling of carbon dioxide into carbon-containing fuels is one of the major challenges in sustainable energy research. Two of the main current limitations are the poor efficiency and fast deactivation of catalysts. Core–shell nanoparticles are promising candidates for enhancing challenging reactions. In this work, Au@Cu core–shell nanoparticles with well-defined surface structures were synthesized and evaluated as catalysts for the electrochemical reduction of carbon dioxide in neutral medium. The activation potential, the product distribution and the long term durability of this catalyst were assessed by electrochemical methods, on-line electrochemical mass spectrometry (OLEMS) and on-line high performance liquid chromatography. Our results show that the catalytic activity and the selectivity can be tweaked as a function of the thickness of Cu shells. We have observed that the Au cubic nanoparticles with 7–8 layers of copper present higher selectivity towards the formation of hydrogen and ethylene; on the other hand, we observed that Au cubic nanoparticles with more than 14 layers of Cu are more selective towards the formation of hydrogen and methane. A trend in the formation of the gaseous products can be also drawn. The H2 and CH4 formation increases with the number of Cu layers, while the formation of ethylene decreases. Formic acid was the only liquid species detected during CO2 reduction. Similar to the gaseous species, the formation of formic acid is strongly dependent on the number of Cu layers on the core@shell nanoparticles. The Au cubic nanoparticles with 7–8 layers of Cu showed the largest conversion of CO2 to formic acid at potentials higher than 0.8 V vs. RHE. The observed trends in reactivity and selectivity are linked to the catalyst composition, surface structure and strain/electronic effects.
Resumo:
Catalysts consisting in platinum supported on cerium oxide highly dispersed on activated carbon, with a Pt loading of 1 wt.% and ceria loadings of 5, 10 and 20 wt.% have been prepared by impregnation method and characterized by several techniques (N2 adsorption at 77 K, ICP, XRD, H2-TPR and XPS). Their catalytic behavior has been evaluated in the total oxidation of ethanol and toluene after reduction at 473 K. The obtained results show that the prepared catalysts have better performances than platinum supported on bulk CeO2. The best catalytic performance was obtained for 10 wt.% ceria loading, likely due to an optimum synergistic interaction between highly dispersed cerium oxide and platinum particles. Pt-10Ce/C achieves total conversion of ethanol and toluene to CO2 at 433 K and 453 K, respectively, and shows no deactivation during a test for 100 h. Under humid conditions (relative humidity, RH, of 40 and 80%), the activity was only slightly influenced due to the hydrophobic character of the activated carbon support, which prevents the adsorption of water.
Resumo:
Mesoporous silica supported Ni nanoparticles have been investigated for hydrogen production from ethanol steam reforming. Ethanol reforming is structure-sensitive over Ni, and also dependent on support mesostructure; three-dimensional KIT-6 possessing interconnected mesopores offers superior metal dispersion, steam reforming activity, and on-stream stability against deactivation compared with a two-dimensional SBA-15 support.
Resumo:
nd-of-life care is not usually a priority in cardiology departments. We sought to evaluate the changes in end-of-life care after the introduction of a do-not-resuscitate (DNR) order protocol. Retrospective analysis of all deaths in a cardiology department in two periods, before and after the introduction of the protocol. Comparison of demographic characteristics, use of DNR orders, and end-of-life care issues between both periods, according to the presence in the second period of the new DNR sheet (Group A), a conventional DNR order (Group B) or the absence of any DNR order (Group C). The number of deaths was similar in both periods (n = 198 vs. n = 197). The rate of patients dying with a DNR order increased significantly (57.1% vs. 68.5%; P = 0.02). Only 4% of patients in both periods were aware of the decision taken about cardiopulmonary resuscitation. Patients in Group A received the DNR order one day earlier, and 24.5% received it within the first 24 h of admission (vs. 2.6% in the first period; P < 0.001). All patients in Group A with an implantable cardioverter defibrillator (ICD) had shock therapies deactivated (vs. 25.0% in the first period; P = 0.02). The introduction of a DNR order protocol may improve end-of-life care in cardiac patients by increasing the use and shortening the time of registration of DNR orders. It may also contribute to increase ICD deactivation in patients with these orders in place. However, the introduction of the sheet in late stages of the disease failed to improve patient participation.
Resumo:
An important current problem in micrometeorology is the characterization of turbulence in the roughness sublayer (RSL), where most of the measurements above tall forests are made. There, scalar turbulent fluctuations display significant departures from the predictions of Monin?Obukhov similarity theory (MOST). In this work, we analyze turbulence data of virtual temperature, carbon dioxide, and water vapor in the RSL above an Amazonian forest (with a canopy height of 40 m), measured at 39.4 and 81.6 m above the ground under unstable conditions. We found that dimensionless statistics related to the rate of dissipation of turbulence kinetic energy (TKE) and the scalar variance display significant departures from MOST as expected, whereas the vertical velocity variance follows MOST much more closely. Much better agreement between the dimensionless statistics with the Obukhov similarity variable, however, was found for the subset of measurements made at a low zenith angle Z, in the range 0° < |Z| < 20°. We conjecture that this improvement is due to the relationship between sunlight incidence and the ?activation?deactivation? of scalar sinks and sources vertically distributed in the forest. Finally, we evaluated the relaxation coefficient of relaxed eddy accumulation: it is also affected by zenith angle, with considerable improvement in the range 0° < |Z| < 20°, and its values fall within the range reported in the literature for the unstable surface layer. In general, our results indicate the possibility of better stability-derived flux estimates for low zenith angle ranges.
Resumo:
Resumo: Este estudo objetivou analisar a efetividade do Programa Cisternas utilizando abordagens teóricas orientadas aos atores, a partir do desenvolvimento de novas práticas sociais implementadas pelos agricultores beneficiários do Programa para a convivência com o Semiárido brasileiro. Elaborou-se um estudo de caso selecionando a Comunidade Sítios Areias, localizada no município de Sobral (CE). A coleta de dados foi realizada com a aplicação de questionários às famílias beneficiadas pelo Programa. O marco teórico utilizado foi a teoria da Abordagem dos Meios de Vida para caracterizar a efetividade do programa e compreender o processo de mudança social. Constatou-se que o Programa apesar de utilizar os preceitos do paradigma de desenvolvimento sustentável para a sua implantação, não possibilitou a efetividade do programa em promover modificações das práticas sociais, não revertendo a estratégia de migração das famílias, ocasionada pelo processo de desativação dos beneficiários com a agricultura. A implementação do programa não conseguiu combater a pobreza rural, mesmo proporcionando o acesso à água as famílias. Concluiu-se que a forma de intervenção exigia uma nova dinâmica para o Semiárido, bem mais complexa do que simplesmente a construção de tecnologias sociais de captação de água. Recomenda-se políticas integradas e que contribuam para a melhoria dos meios de vida das famílias, mas que também ensejem seu protagonismo e o fortalecimento de sua autonomia frente às adversidades climáticas frequentes da região. [Evaluation of the effectiveness of the Cisterns Programe according to the Sustainable Livelihood Approach]. Abstract: This study was carried out in order to analyze the effectiveness of the Cisterns Program according to the new social practices implemented by the family farmers in order to survive and live in the adverse environment of the Brazilian semiarid. The empirical space chosen was the Municipality of Sobral (CE) and the case study was the Community Areia Branca. Data was collected on all the families benefited from the Cisterns Program. The analytical theoretical framework used was the Sustainable Livelihood Approach to characterize the effectiveness of the program and the process of social change. It was found that despite using the concepts of sustainable development paradigm in the implementation of Cisterns Program, the program was not effective in promoting social changes or to reserve the migration practice as well, which is a family strategy due to deactivation of agricultural activities. The implementation of the program failed to combat rural poverty other than providing access to water. The form of intervention in the semiarid requires a new dynamic approach, which is far more complex than simply building social technologies for water storage. In order to fight poverty in the region, it is necessary to implement integrated policies able to improve life style and bring about changes in order to empower and give autonomy to the families helping them to face the adverse climatic conditions typical of the region.