963 resultados para Confocal microscopy
Resumo:
Drugs that release nitric oxide (NO) usually have limitations due to their harmful effects. Sodium nitroprusside (SNP) induces a rapid hypotension that leads to reflex tachycardia, which could be an undesirable effect in patients with heart disease, a common feature of hypertension. The nitrosyl ruthenium complex [Ru(terpy)(bdq)NO+](3+) (TERPY) is a NO donor that is less potent than SNP in denuded aortic rings. This study evaluated the hypotension and vasorelaxation induced by this NO donor in Wistar (W) and spontaneously hypertensive rats (SHR) and compared to the results obtained with SNP. Differently from the hypotension induced by SNP, the action of TERPY was slow, long lasting and it did not lead to reflex tachycardia in both groups. The hypotension induced by the NO-donors was more potent in SHR than in W. TERPY induced relaxation with similar efficacy to SNP, although its potency is lower in both strains. The relaxation induced by TERPY is similar in W and SHR, but SNP is more potent and efficient in SHR. The relaxation induced by TERPY is partially dependent on guanylate cyclase in SHR aorta. The NO released from the NO donors measured with DAF-2 DA by confocal microscopy shows that TERPY releases similar amounts of NO in W and SHR, while SNP releases more NO in SHR aortic rings. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
Abstract Background Down syndrome is the most frequent genetic disorder in humans. Rare cases involving partial trisomy of chromosome 21 allowed a small chromosomal region common to all carriers, called Down Syndrome Critical Region (DSCR), to be determined. The DSCR1 gene was identified in this region and is expressed preferentially in the brain, heart and skeletal muscle. Recent studies have shown that DSCR1 belongs to a family of proteins that binds and inhibits calcineurin, a serine-threonine phosphatase. The work reported on herein consisted of a study of the subcellular location of DSCR1 and DSCR1-mutated forms by fusion with a green fluorescent protein, using various cell lines, including human. Results The protein's location was preferentially nuclear, independently of the isoform, cell line and insertion in the GFP's N- or C-terminal. A segment in the C-terminal, which is important in the location of the protein, was identified by deletion. On the other hand, site-directed mutational analyses have indicated the involvement of some serine and threonine residues in this event. Conclusion In this paper, we discuss the identification of amino acids which can be important for subcellular location of DSCR1. The involvement of residues that are prone to phosphorylation suggests that the location and function of DSCR1 may be regulated by kinases and/or phosphatases.
Resumo:
Abstract Background Some organisms can survive extreme desiccation by entering a state of suspended animation known as anhydrobiosis. The free-living mycophagous nematode Aphelenchus avenae can be induced to enter anhydrobiosis by pre-exposure to moderate reductions in relative humidity (RH) prior to extreme desiccation. This preconditioning phase is thought to allow modification of the transcriptome by activation of genes required for desiccation tolerance. Results To identify such genes, a panel of expressed sequence tags (ESTs) enriched for sequences upregulated in A. avenae during preconditioning was created. A subset of 30 genes with significant matches in databases, together with a number of apparently novel sequences, were chosen for further study. Several of the recognisable genes are associated with water stress, encoding, for example, two new hydrophilic proteins related to the late embryogenesis abundant (LEA) protein family. Expression studies confirmed EST panel members to be upregulated by evaporative water loss, and the majority of genes was also induced by osmotic stress and cold, but rather fewer by heat. We attempted to use RNA interference (RNAi) to demonstrate the importance of this gene set for anhydrobiosis, but found A. avenae to be recalcitrant with the techniques used. Instead, therefore, we developed a cross-species RNAi procedure using A. avenae sequences in another anhydrobiotic nematode, Panagrolaimus superbus, which is amenable to gene silencing. Of 20 A. avenae ESTs screened, a significant reduction in survival of desiccation in treated P. superbus populations was observed with two sequences, one of which was novel, while the other encoded a glutathione peroxidase. To confirm a role for glutathione peroxidases in anhydrobiosis, RNAi with cognate sequences from P. superbus was performed and was also shown to reduce desiccation tolerance in this species. Conclusions This study has identified and characterised the expression profiles of members of the anhydrobiotic gene set in A. avenae. It also demonstrates the potential of RNAi for the analysis of anhydrobiosis and provides the first genetic data to underline the importance of effective antioxidant systems in metazoan desiccation tolerance.
Resumo:
Background:The golden retriever muscular dystrophy (GRMD) dogs represent the best available animal model for therapeutic trials aiming at the future treatment of human Duchenne muscular dystrophy (DMD). We have obtained a rare litter of six GRMD dogs (3 males and 3 females) born from an affected male and a carrier female which were submitted to a therapeutic trial with adult human stem cells to investigate their capacity to engraft into dogs muscles by local as compared to systemic injection without any immunosuppression. Methods Human Immature Dental Pulp Stem Cells (hIDPSC) were transplanted into 4 littermate dogs aged 28 to 40 days by either arterial or muscular injections. Two non-injected dogs were kept as controls. Clinical translation effects were analyzed since immune reactions by blood exams and physical scores capacity of each dog. Samples from biopsies were checked by immunohistochemistry (dystrophin markers) and FISH for human probes. Results and Discussion We analyzed the cells' ability in respect to migrate, engraftment, and myogenic potential, and the expression of human dystrophin in affected muscles. Additionally, the efficiency of single and consecutive early transplantation was compared. Chimeric muscle fibers were detected by immunofluorescence and fluorescent in situ hybridisation (FISH) using human antibodies and X and Y DNA probes. No signs of immune rejection were observed and these results suggested that hIDPSC cell transplantation may be done without immunosuppression. We showed that hIDPSC presented significant engraftment in GRMD dog muscles, although human dystrophin expression was modest and limited to several muscle fibers. Better clinical condition was also observed in the dog, which received monthly arterial injections and is still clinically stable at 25 months of age. Conclusion Our data suggested that systemic multiple deliveries seemed more effective than local injections. These findings open important avenues for further researches.
Resumo:
Abstract Background Nectar reabsorption is a widely known phenomenon, related to the strategy of resource-recovery and also to maintain the nectar homeostasis at the nectary. The method currently performed to demonstrate nectar being reabsorbed involves the use of radioactive tracers applied to the nectary. Although this method works perfectly, it is complex and requires specific supplies and equipment. Therefore, here we propose an efficient method to obtain a visual demonstration of nectar reabsorption, adapting the use of Lucifer Yellow CH (LYCH), a fluorescent membrane-impermeable dye that can enter the vacuole by endocytosis. Results We applied a LYCH solution to the floral nectary (FN) of Cucurbita pepo L., which is a species known for its ability of nectar reabsorption, and to the extrafloral nectary (EFN) of Passiflora edulis Sims which does not reabsorb the secreted nectar. In all tests performed, we observed that LYCH stained the nectary tissues differentially according to the reabsorption ability of the nectary. The treated FN of C. pepo presented a concentrated fluorescence at the epidermis that decreased at the deeper nectary parenchyma, until reaching the vascular bundles, indicating nectar reabsorption in the flowers of the species. In contrast, treated EFN of P. edulis presented fluorescence only at the cuticle surface, indicating that nectar is not reabsorbed by that particular tissue. Conclusion LYCH is an efficient marker to demonstrate nectar reabsorption.
Resumo:
Introduction: The aim of this study was to compare Enterococcus faecalis biofilm formation on different substrates. Methods: Cell culture plates containing growth medium and E. faecalis (ATCC 29212) were used to grow biofilm on bovine dentin, gutta-percha, hydroxyapatite, or bovine bone. Substrates were incubated at 37 C for 14 or 21 days, and the medium was changed every 48 hours. After the growth induction periods, specimens (n = 5 per group and per induction period) were stained by using Live/Dead, and the images were analyzed under a confocal microscope. The total biovolume (mm3), live bacteria biovolume (mm3), and substrate coverage (%) were quantified by using the BioImage_L software. Results obtained were analyzed by nonparametric tests (P = .05). Results: Biofilm formation was observed in all groups. Gutta-percha had the lowest total biovolume at 14 days (P < .05) and hydroxyapatite the highest at 21 days (P < .05). No significant difference was observed in green biovolume at 14 days. At 21 days, however, hydroxyapatite had the highest volume (P < .05). The percentages of coverage were similar among all substrates at 21 days (P > .05), but at 14 days, bovine bone presented the highest coverage (P < .05). Conclusions: E. faecalis was capable of forming biofilm on all substrates during both growth periods; hydroxyapatite presented the highest rates of biofilm formation. The type of substrate influenced the biofilm characteristics, according to the parameters evaluated
Resumo:
Introduction: Matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs) are strongly associated with tissue destruction because of inflammation. In this study, we investigated the expression of MMPs and TIMPs messenger RNA and protein levels in apical periodontitis lesions. Methods: Tissue samples from patients presenting clinical signs of chronic apical abscess (CAA) or asymptomatic apical periodontitis (AAP) were collected postoperatively and used for gene expression analysis of MMP-2, -3, -7, -9, -14, -16, and -25; TIMP-1; and TIMP-2 in real-time polymerase chain reaction. Immunohistochemistry was also performed to detect the expression of MMP-7 and TIMP-1 proteins. Lastly, U-937 cells were induced to terminal differentiation into macrophages, infected with purified Escherichia coli lipopolysaccharide, and assessed for the expression of MMP-7 and TIMP-1 using immunocytochemistry and confocal microscopy. Results: Significantly higher messenger RNA levels were found for all genes in AAP and CAA samples when compared with healthy control samples (P < .001). AAP cases exhibited significantly higher TIMP-1 when compared with CAA cases, whereas CAA cases showed higher MMP-2, MMP-7, and MMP-9 messenger RNA levels (P < .05). We also detected positive the expression of MMP-7 and TIMP-1 proteins in the tissue samples. The expression of both MMP-7 and TIMP-1 were increased in lipopolysaccharide-stimulated cells compared with nonstimulated cells and appear to colocalize in the Golgi apparatus. Conclusions: MMPs appear to have an influential role in CAA cases in which ongoing tissue destruction is observed. TIMPs are preferentially associated with AAP, perhaps as a subsequent defense mechanism against excessive destruction. Taken together, our findings implicate MMP and TIMP molecules in the dynamics of inflammatory periapical lesion development
Resumo:
Objectives. To evaluate if the incorporation of antimicrobial compounds to chelating agents or the use of chelating agents with antimicrobial activity as 7% maleic acid and peracetic acid show similar disinfection ability in comparison to conventional irrigants as sodium hypochlorite or iodine potassium iodide against biofilms developed on dentin. Materials and methods. The total bio-volume of live cells, the ratio of live cells and the substratum coverage of dentin infected intra-orally and treated with the irrigant solutions: MTAD, Qmix, Smear Clear, 7% maleic acid, 2% iodine potassium iodide, 4% peracetic acid, 2.5% and 5.25% sodium hypochlorite was measured by using confocal microscopy and the live/dead technique. Five samples were used for each irrigant solution. Results. Several endodontic irrigants containing antimicrobials as clorhexidine (Qmix), cetrimide (Smear Clear), maleic acid, iodine compounds or antibiotics (MTAD) lacked an effective antibiofilm activity when the dentin was infected intra-orally. The irrigant solutions 4% peracetic acid and 2.5–5.25% sodium hypochlorite decrease significantly the number of live bacteria in biofilms, providing also cleaner dentin surfaces (p < 0.05). Conclusions. Several chelating agents containing antimicrobials could not remove nor kill significantly biofilms developed on intra-orally infected dentin, with the exception of sodium hypochlorite and 4% peracetic acid. Dissolution ability is mandatory for an appropriate eradication of biofilms attached to dentin.
Resumo:
Background Ureaplasma diversum has been associated with infertility in cows. In bulls, this mollicute colonizes the prepuce and distal portion of the urethra and may infect sperm cells. The aim of this study is to analyze in vitro interaction of U. diversum isolates and ATCC strains with bovine spermatozoids. The interactions were observed by confocal microscopy and the gentamycin internalization assay. Findings U. diversum were able to adhere to and invade spermatozoids after 30 min of infection. The gentamicin resistance assay confirmed the intracellularity and survival of U. diversum in bovine spermatozoids. Conclusions The intracellular nature of bovine ureaplasma identifies a new difficulty to control the reproductive of these animals.
Resumo:
The effect of angiotensin II (ANG II) or arginine vasopressin (AVP) alone or plus atrial natriuretic peptide (ANP) on H+-ATPase subcellular vesicle trafficking was investigated in MDCK cells following intracellular pH (pHi) acidification by exposure to20 mMNH4Cl for 2 min in a Na+-free solution containing Schering 28080, conditions under which H+-AT-Pase is the only cell mechanism for pHi recovery. Using the acridine orange fluorescent probe (5mM) and confocal microscopy, the vesicle movement was quantified by determining, for each experimental group, the mean slope of the line indicating the changes in apical/basolateral fluorescence density ratio over time during the first 5.30 min of the pHi recovery period. Under the control conditions, the mean slope was 0.079 ± 0.0033 min-1 (14) and it increased significantly with ANG II [10-12 and 10-7 M, respectively to 0.322 ± 0.038 min-1 (13) and 0.578 ± 0.061 min-1 (12)] or AVP [10-12 and 10-6 M, respectively to 0.301 ± 0.018 min-1 (12) and 0.687 ± 0.049 min-1 (11)]. However, in presence of ANP (10-6 M, decreases cytosolic free calcium), dimethyl-BAPTA/AM (5 × 10-5 M, chelates intracellular calcium) or colchicine (10-5 M, 2-h preincubation; inhibits microtubule-dependent vesicular trafficking) alone or plus ANG II or AVP the mean slopes were similar to the control values, indicating that such agents blocked the stimulatory effect of ANG II or AVP on vesicle trafficking. The results suggest that the pathway responsible for the increase in cytosolic free calcium and the microtu-bule-dependent vesicular trafficking are involved in this hormonal stimulating effect. Whether cytosolic free calcium reduction represents an important direct mechanism for ANP impairs the dose-dependent stimulatory effect of ANG II or AVP on H+-ATPase subcellular vesicle trafficking, or is a side effect of other signaling pathways which will require additional studies.
Resumo:
Epithelial cells in oral cavities can be considered reservoirs for a variety of bacterial species. A polymicrobial intracellular flora associated with periodontal disease has been demonstrated in buccal cells. Important aetiological agents of systemic and nosocomial infections have been detected in the microbiota of subgingival biofilm, especially in individuals with periodontal disease. However, non-oral pathogens internalized in oral epithelial cells and their relationship with periodontal status are poorly understood. The purpose of this study was to detect opportunistic species within buccal and gingival crevice epithelial cells collected from subjects with periodontitis or individuals with good periodontal health, and to associate their prevalence with periodontal clinical status. Quantitative detection of total bacteria and Staphylococcus aureus, Pseudomonas aeruginosa and Enterococcus faecalis in oral epithelial cells was determined by quantitative real-time PCR using universal and species-specific primer sets. Intracellular bacteria were visualized by confocal microscopy and fluorescence in situ hybridization. Overall, 33 % of cell samples from patients with periodontitis contained at least one opportunistic species, compared with 15 % of samples from healthy individuals. E. faecalis was the most prevalent species found in oral epithelial cells (detected in 20.6 % of patients with periodontitis, P = 0.03 versus healthy individuals) and was detected only in cells from patients with periodontitis. Quantitative real-time PCR showed that high levels of P. aeruginosa and S. aureus were present in both the periodontitis and healthy groups. However, the proportion of these species was significantly higher in epithelial cells of subjects with periodontitis compared with healthy individuals (P = 0.016 for P. aeruginosa and P = 0.047 for S. aureus). Although E. faecalis and P. aeruginosa were detected in 57 % and 50 % of patients, respectively, with probing depth and clinical attachment level ≥6 mm, no correlation was found with age, sex, bleeding on probing or the presence of supragingival biofilm. The prevalence of these pathogens in epithelial cells is correlated with the state of periodontal disease.
Resumo:
Introduction. Postnatal neurogenesis in the hippocampal dentate gyrus, can be modulated by numerous determinants, such as hormones, transmitters and stress. Among the factors positively interfering with neurogenesis, the complexity of the environment appears to play a particularly striking role. Adult mice reared in an enriched environment produce more neurons and exhibit better performance in hippocampus-specific learning tasks. While the effects of complex environments on hippocampal neurogenesis are well documented, there is a lack of information on the effects of living under socio-sensory deprivation conditions. Due to the immaturity of rats and mice at birth, studies dealing with the effects of environmental enrichment on hippocampal neurogenesis were carried out in adult animals, i.e. during a period of relatively low rate of neurogenesis. The impact of environment is likely to be more dramatic during the first postnatal weeks, because at this time granule cell production is remarkably higher than at later phases of development. The aim of the present research was to clarify whether and to what extent isolated or enriched rearing conditions affect hippocampal neurogenesis during the early postnatal period, a time window characterized by a high rate of precursor proliferation and to elucidate the mechanisms underlying these effects. The experimental model chosen for this research was the guinea pig, a precocious rodent, which, at 4-5 days of age can be independent from maternal care. Experimental design. Animals were assigned to a standard (control), an isolated, or an enriched environment a few days after birth (P5-P6). On P14-P17 animals received one daily bromodeoxyuridine (BrdU) injection, to label dividing cells, and were sacrificed either on P18, to evaluate cell proliferation or on P45, to evaluate cell survival and differentiation. Methods. Brain sections were processed for BrdU immunhistochemistry, to quantify the new born and surviving cells. The phenotype of the surviving cells was examined by means of confocal microscopy and immunofluorescent double-labeling for BrdU and either a marker of neurons (NeuN) or a marker of astrocytes (GFAP). Apoptotic cell death was examined with the TUNEL method. Serial sections were processed for immunohistochemistry for i) vimentin, a marker of radial glial cells, ii) BDNF (brain-derived neurotrofic factor), a neurotrophin involved in neuron proliferation/survival, iii) PSA-NCAM (the polysialylated form of the neural cell adhesion molecule), a molecule associated with neuronal migration. Total granule cell number in the dentate gyrus was evaluated by stereological methods, in Nissl-stained sections. Results. Effects of isolation. In P18 isolated animals we found a reduced cell proliferation (-35%) compared to controls and a lower expression of BDNF. Though in absolute terms P45 isolated animals had less surviving cells than controls, they showed no differences in survival rate and phenotype percent distribution compared to controls. Evaluation of the absolute number of surviving cells of each phenotype showed that isolated animals had a reduced number of cells with neuronal phenotype than controls. Looking at the location of the new neurons, we found that while in control animals 76% of them had migrated to the granule cell layer, in isolated animals only 55% of the new neurons had reached this layer. Examination of radial glia cells of P18 and P45 animals by vimentin immunohistochemistry showed that in isolated animals radial glia cells were reduced in density and had less and shorter processes. Granule cell count revealed that isolated animals had less granule cells than controls (-32% at P18 and -42% at P45). Effects of enrichment. In P18 enriched animals there was an increase in cell proliferation (+26%) compared to controls and a higher expression of BDNF. Though in both groups there was a decline in the number of BrdU-positive cells by P45, enriched animals had more surviving cells (+63) and a higher survival rate than controls. No differences were found between control and enriched animals in phenotype percent distribution. Evaluation of the absolute number of cells of each phenotype showed that enriched animals had a larger number of cells of each phenotype than controls. Looking at the location of cells of each phenotype we found that enriched animals had more new neurons in the granule cell layer and more astrocytes and cells with undetermined phenotype in the hilus. Enriched animals had a higher expression of PSA-NCAM in the granule cell layer and hilus Vimentin immunohistochemistry showed that in enriched animals radial glia cells were more numerous and had more processes.. Granule cell count revealed that enriched animals had more granule cells than controls (+37% at P18 and +31% at P45). Discussion. Results show that isolation rearing reduces hippocampal cell proliferation but does not affect cell survival, while enriched rearing increases both cell proliferation and cell survival. Changes in the expression of BDNF are likely to contribute to he effects of environment on precursor cell proliferation. The reduction and increase in final number of granule neurons in isolated and enriched animals, respectively, are attributable to the effects of environment on cell proliferation and survival and not to changes in the differentiation program. As radial glia cells play a pivotal role in neuron guidance to the granule cell layer, the reduced number of radial glia cells in isolated animals and the increased number in enriched animals suggests that the size of radial glia population may change dynamically, in order to match changes in neuron production. The high PSA-NCAM expression in enriched animals may concur to favor the survival of the new neurons by facilitating their migration to the granule cell layer. Conclusions. By using a precocious rodent we could demonstrate that isolated/enriched rearing conditions, at a time window during which intense granule cell proliferation takes place, lead to a notable decrease/increase of total granule cell number. The time-course and magnitude of postnatal granule cell production in guinea pigs are more similar to the human and non-human primate condition than in rats and mice. Translation of current data to humans would imply that exposure of children to environments poor/rich of stimuli may have a notably large impact on dentate neurogenesis and, very likely, on hippocampus dependent memory functions.
Resumo:
Allergies are a complex of symptoms derived from altered IgE-mediated reactions of the immune system towards substances known as allergens. Allergic sensibilization can be of food or respiratory origin and, in particular, apple and hazelnut allergens have been identified in pollens or fruits. Allergic cross-reactivity can occur in a patient reacting to similar allergens from different origins, justifying the research in both systems as in Europe a greater number of people suffers from apple fruit allergy, but little evidence exists about pollen. Apple fruit allergies are due to four different classes of allergens (Mal d 1, 2, 3, 4), whose allergenicity is related both to genotype and tissue specificity; therefore I have investigated their presence also in pollen at different time of germination to clarify the apple pollen allergenic potential. I have observed that the same four classes of allergens found in fruit are expressed at different levels also in pollen, and their presence might support that the apple pollen can be considered allergenic as the fruit, deducing that apple allergy could also be indirectly caused by sensitization to pollen. Climate changes resulting from increases in temperature and air pollution influence pollen allergenicity, responsible for the dramatic raise in respiratory allergies (hay fever, bronchial asthma, conjunctivitis). Although the link between climate change and pollen allergenicity is proven, the underlying mechanism is little understood. Transglutaminases (TGases), a class of enzymes able to post-translationally modify proteins, are activated under stress and involved in some inflammatory responses, enhancing the activity of pro-inflammatory phospholipase A2, suggesting a role in allergies. Recently, a calcium-dependent TGase activity has been identified in the pollen cell wall, raising the possibility that pollen TGase may have a role in the modification of pollen allergens reported above, thus stabilizing them against proteases. This enzyme can be involved also in the transamidation of proteins present in the human mucosa interacting with surface pollen or, finally, the enzyme itself can represent an allergen, as suggested by studies on celiac desease. I have hypothesized that this pollen enzyme can be affected by climate changes and be involved in exhacerbating allergy response. The data presented in this thesis represent a scientific basis for future development of studies devoted to verify the hypothesis set out here. First, I have demonstrated the presence of an extracellular TGase on the surface of the grain observed either at the apical or the proximal parts of the pollen-tube by laser confocal microscopy (Iorio et al., 2008), that plays an essential role in apple pollen-tube growth, as suggested by the arrest of tube elongation by TGase inhibitors, such as EGTA or R281. Its involvement in pollen tube growth is mainly confirmed by the data of activity and gene expression, because TGase showed a peak between 15 min and 30 min of germination, when this process is well established, and an optimal pH around 6.5, which is close to that recorded for the germination medium. Moreover, data show that pollen TGase can be a glycoprotein as the glycosylation profile is linked both with the activation of the enzyme and with its localization at the pollen cell wall during germination, because from the data presented seems that the active form of TGase involved in pollen tube growth and pollen-stylar interaction is more exposed and more weakly bound to the cell wall. Interestingly, TGase interacts with fibronectin (FN), a putative SAMs or psECM component, inducing possibly intracellular signal transduction during the interaction between pollen-stylar occuring in the germination process, since a protein immunorecognised by anti-FN antibody is also present in pollen, in particular at the level of pollen grain cell wall in a punctuate pattern, but also along the shank of the pollen tube wall, in a similar pattern that recalls the signal obtained with the antibody anti TGase. FN represents a good substrate for the enzyme activity, better than DMC usually used as standard substrate for animal TGase. Thus, this pollen enzyme, necessary for its germination, is exposed on the pollen surface and consequently can easily interact with mucosal proteins, as it has been found germinated pollen in studies conducted on human mucus (Forlani, personal communication). I have obtained data that TGase activity increases in a very remarkable way when pollen is exposed to stressful conditions, such as climate changes and environmental pollution. I have used two different species of pollen, an aero allergenic (hazelnut, Corylus avellana) pollen, whose allergenicity is well documented, and an enthomophylus (apple, Malus domestica) pollen, which is not yet well characterized, to compare data on their mechanism of action in response to stressors. The two pollens have been exposed to climate changes (different temperatures, relative humidity (rH), acid rain at pH 5.6 and copper pollution (3.10 µg/l)) and showed an increase in pollen surface TGase activity that is not accompanied to an induced expression of TGase immunoreactive protein with AtPNG1p. Probably, climate change induce an alteration or damage to pollen cell wall that carries the pollen grains to release their content in the medium including TGase enzyme, that can be free to carry out its function as confirmed by the immunolocalisation and by the in situ TGase activity assay data; morphological examination indicated pollen damage, viability significantly reduced and in acid rain conditions an early germination of apple pollen, thus possibly enhancing the TGase exposure on pollen surface. Several pollen proteins were post-translationally modified, as well as mammalian sPLA2 especially with Corylus pollen, which results in its activation, potentially altering pollen allergenicity and inflammation. Pollen TGase activity mimicked the behaviour of gpl TGase and AtPNG1p in the stimulation of sPLA2, even if the regulatory mechanism seems different to gpl TGase, because pollen TGase favours an intermolecular cross-linking between various molecules of sPLA2, giving rise to high-molecular protein networks normally more stable. In general, pollens exhibited a significant endogenous phospholipase activity and it has been observed differences according to the allergenic (Corylus) or not-well characterized allergenic (Malus) attitude of the pollen. However, even if with a different intensity level in activation, pollen enzyme share the ability to activate the sPLA2, thus suggesting an important regulatory role for the activation of a key enzyme of the inflammatory response, among which my interest was addressed to pollen allergy. In conclusion, from all the data presented, mainly presence of allergens, presence of an extracellular TGase, increasing in its activity following exposure to environmental pollution and PLA2 activation, I can conclude that also Malus pollen can behave as potentially allergenic. The mechanisms described here that could affect the allergenicity of pollen, maybe could be the same occurring in fruit, paving the way for future studies in the identification of hyper- and hypo- allergenic cultivars, in preventing environmental stressor effects and, possibly, in the production of transgenic plants.
Resumo:
Sigma (σ) receptors are well established as a non-opioid, non-phencyclidine, and haloperidol-sensitive receptor family with its own binding profile and a characteristic distribution in the central nervous system (CNS) as well as in endocrine, immune, and some peripheral tissues. Two σ receptors subtypes, termed σ1 and σ2, have been pharmacologically characterized, but, to date, only the σ1 has also been cloned. Activation of σ1 receptors alter several neurotransmitter systems and dopamine (DA) neurotrasmission has been often shown to constitute an important target of σ receptors in different experimental models; however the exact role of σ1 receptor in dopaminergic neurotransmission remains unclear. The DA transporter (DAT) modulates the spatial and temporal aspects of dopaminergic synaptic transmission and interprer the primary mechanism by wich dopaminergic neurons terminate the signal transmission. For this reason present studies have been focused in understanding whether, in cell models, the human subtype of σ1 (hσ1) receptor is able to directly modulate the human DA transporter (hDAT). In the first part of this thesis, HEK-293 and SH-SY5Y cells were permanently transfected with the hσ1 receptor. Subsequently, they were transfected with another plasmid for transiently expressing the hDAT. The hDAT activity was estimated using the described [3H]DA uptake assay and the effects of σ ligands were evaluated by measuring the uptaken [3H]DA after treating the cells with known σ agonists and antagonists. Results illustrated in this thesis demonstrate that activation of overexpressed hσ1 receptors by (+)-pentazocine, the σ1 agonist prototype, determines an increase of 40% of the extracellular [3H]DA uptake, in comparison to non-treated controls and the σ1 antagonists BD-1047 and NE-100 prevent the positive effect of (+)-pentazocine on DA reuptake DA is likely to be considered a neurotoxic molecule. In fact, when levels of intracellular DA abnormally invrease, vescicles can’t sequester the DA which is metabolized by MAO (A and B) and COMT with consequent overproduction of oxygen reactive species and toxic catabolites. Stress induced by these molecules leads cells to death. Thus, for the second part of this thesis, experiments have been performed in order to investigate functional alterations caused by the (+)-pentazocine-mediated increase of DA uptake; particularly it has been investigated if the increase of intracellular [DA] could affect cells viability. Results obtained from this study demonstrate that (+)-pentazocine alone increases DA cell toxicity in a concentration-dependent manner only in cells co-expressing hσ1 and hDAT and σ1 antagonists are able to revert the (+)-pentazocine-induced increase of cell susceptibility to DA toxicity. In the last part of this thesis, the functional cross-talking between hσ1 receptor and hDAT has been further investigated using confocal microscopy. From the acquired data it could be suggested that, following exposure to (+)-pentazocine, the hσ1 receptors massively translocate towards the plasma membrane and colocalize with the hDATs. However, any physical interaction between the two proteins remains to be proved. In conclusion, the presented study shows for the first time that, in cell models, hσ1 receptors directly modulate the hDAT activity. Facilitation of DA uptake induced by (+)-pentazocine is reflected on the increased cell susceptibility to DA toxicity; these effects are prevented by σ1 selective antagonists. Since numerous compounds, including several drugs of abuse, bind to σ1 receptors and activating them could facilitate the damage of dopaminergic neurons, the reported protective effect showed by σ1 antagonists would represent the pharmacological basis to test these compounds in experimental models of dopaminergic neurodegenerative diseases (i.e. Parkinson’s Disease).
Resumo:
Bioinformatic analysis of Group A Streptococcus (GAS) genomes aiming at the identification of new vaccine antigens, revealed the presence of a gene coding for a putative surface-associated protein, named GAS40, inducing protective antibodies in an animal model of sepsis. The aim of our study was to unravel the involvement of GAS40 in cell division processes and to identify the putative interactor. Firstly, bioinformatic analysis showed that gas40 shares homology with ezrA, a gene coding for a negative regulator of Z-ring formation during cell division process. Both scanning and transmission electron microscopy indicated morphological differences between wild-type and the GAS40 knock-out mutant strain, with the latter showing an impaired capacity to divide resulting in the formation of very long chains. Moreover, when the localization of the antigen on the bacterial surface was analyzed, we found that in bacteria grown at exponential phase GAS40 specifically localized at septum, indicating a possible role in cell division. Furthermore, by ELISA and co-sedimentation assays, we found that GAS40 is able to interact with FtsZ, a protein involved in Z-ring formation during cell division process. These data together with the co-localization of GAS40/FtsZ at bacterial septum demonstrated by by confocal microscopy, strongly support the hypothesis for a key role of GAS40 in bacterial cell division.