985 resultados para Challenge test
Resumo:
Today’s information systems log vast amounts of data. These collections of data (implicitly) describe events (e.g. placing an order or taking a blood test) and, hence, provide information on the actual execution of business processes. The analysis of such data provides an excellent starting point for business process improvement. This is the realm of process mining, an area which has provided a repertoire of many analysis techniques. Despite the impressive capabilities of existing process mining algorithms, dealing with the abundance of data recorded by contemporary systems and devices remains a challenge. Of particular importance is the capability to guide the meaningful interpretation of “oceans of data” by process analysts. To this end, insights from the field of visual analytics can be leveraged. This article proposes an approach where process states are reconstructed from event logs and visualised in succession, leading to an animated history of a process. This approach is customisable in how a process state, partially defined through a collection of activity instances, is visualised: one can select a map and specify a projection of events on this map based on the properties of the events. This paper describes a comprehensive implementation of the proposal. It was realised using the open-source process mining framework ProM. Moreover, this paper also reports on an evaluation of the approach conducted with Suncorp, one of Australia’s largest insurance companies.
Resumo:
The ambiguity acceptance test is an important quality control procedure in high precision GNSS data processing. Although the ambiguity acceptance test methods have been extensively investigated, its threshold determine method is still not well understood. Currently, the threshold is determined with the empirical approach or the fixed failure rate (FF-) approach. The empirical approach is simple but lacking in theoretical basis, while the FF-approach is theoretical rigorous but computationally demanding. Hence, the key of the threshold determination problem is how to efficiently determine the threshold in a reasonable way. In this study, a new threshold determination method named threshold function method is proposed to reduce the complexity of the FF-approach. The threshold function method simplifies the FF-approach by a modeling procedure and an approximation procedure. The modeling procedure uses a rational function model to describe the relationship between the FF-difference test threshold and the integer least-squares (ILS) success rate. The approximation procedure replaces the ILS success rate with the easy-to-calculate integer bootstrapping (IB) success rate. Corresponding modeling error and approximation error are analysed with simulation data to avoid nuisance biases and unrealistic stochastic model impact. The results indicate the proposed method can greatly simplify the FF-approach without introducing significant modeling error. The threshold function method makes the fixed failure rate threshold determination method feasible for real-time applications.
Resumo:
Anthropogenic elemental mercury (Hg0) emission is a serious worldwide environmental problem due to the extreme toxicity of the heavy metal to humans, plants and wildlife. Development of an accurate and cheap microsensor based online monitoring system which can be integrated as part of Hg0 removal and control processes in industry is still a major challenge. Here, we demonstrate that forming Au nanospike structures directly onto the electrodes of a quartz crystal microbalance (QCM) using a novel electrochemical route results in a self-regenerating, highly robust, stable, sensitive and selective Hg0 vapor sensor. The data from a 127 day continuous test performed in the presence of volatile organic compounds and high humidity levels, showed that the sensor with an electrodeposted sensitive layer had 260% higher response magnitude, 3.4 times lower detection limit (,22 mg/m3 or ,2.46 ppbv) and higher accuracy (98% Vs 35%) over a Au control based QCM (unmodified) when exposed to a Hg0 vapor concentration of 10.55 mg/m3 at 1016C. Statistical analysis of the long term data showed that the nano-engineered Hg0 sorption sites on the developed Au nanospikes sensitive layer play a critical role in the enhanced sensitivity and selectivity of the developed sensor towards Hg0 vapor.
Resumo:
The UAV challenge takes place every year. Teams of compteitors compete to use an Unmanned Airborne Vehicle to locate a simulated lost person and deliver water.
Resumo:
With the variety of PV inverter types and the number of transformerless PV inverters on the Australian market increasing, we revisit some of the issues associated with these topologies. A recent electric shock incident in Queensland (luckily without serious outcome) associated with a transformerless PV system, highlights the need for earthing PV array structures and PV module frames to prevent capacitive leakage currents causing electric shock. The presented test results of the relevant voltages associated with leakage currents of five transformerless PV inverters stress this requirement, which is currently being addressed by both the Clean Energy Council and Standards Australia. DC current injection tests were performed on the same five inverters and were used to develop preliminary recommendations for a more meaningful DC current test procedure for AS4777 Part 2. The test circuit, methodology and results are presented and discussed. A notable temperature dependency of DC current injections with three of the five inverters suggests that DC current injection should be tested at high and low internal inverter temperatures whereas the power dependency noted only for one inverter does not seem to justify recommendations for a (rather involved) standard test procedure at different power levels.
Resumo:
Self-care management is needed for effective management of chronic kidney disease. The main aim for treatment or management of chronic kidney disease is to delay the worsening of kidney function, and to prevent or to manage the co-morbidities. Selfcare management is not easy, and patients will face many challenges, especially when they cannot get use to the new treatment plan. One of the challenges they face is dietary restriction, which is a very important aspect in any self-care management programme. Chronic kidney disease patients require a low-protein, low-sodium, low-potassium, and low-phosphorus diet. There are several strategies patients can undertake to ensure adherence, such as self-monitoring their dietary habits and type of food consumed using a food diary; involving social support, such as family members and spouse to help them to adhere to their diet restrictions; setting goals and providing positive reinforcement when they achieved the targeted goals; joining self-management programmes to equip themselves with the necessary skills so that they can better adhere to the treatment regimes, including diet restriction; and lastly, having the knowledge about their regime, and using this knowledge to help them understand and improve their adherence.
Resumo:
Background: A major challenge for assessing students’ conceptual understanding of STEM subjects is the capacity of assessment tools to reliably and robustly evaluate student thinking and reasoning. Multiple-choice tests are typically used to assess student learning and are designed to include distractors that can indicate students’ incomplete understanding of a topic or concept based on which distractor the student selects. However, these tests fail to provide the critical information uncovering the how and why of students’ reasoning for their multiple-choice selections. Open-ended or structured response questions are one method for capturing higher level thinking, but are often costly in terms of time and attention to properly assess student responses. Purpose: The goal of this study is to evaluate methods for automatically assessing open-ended responses, e.g. students’ written explanations and reasoning for multiple-choice selections. Design/Method: We incorporated an open response component for an online signals and systems multiple-choice test to capture written explanations of students’ selections. The effectiveness of an automated approach for identifying and assessing student conceptual understanding was evaluated by comparing results of lexical analysis software packages (Leximancer and NVivo) to expert human analysis of student responses. In order to understand and delineate the process for effectively analysing text provided by students, the researchers evaluated strengths and weakness for both the human and automated approaches. Results: Human and automated analyses revealed both correct and incorrect associations for certain conceptual areas. For some questions, that were not anticipated or included in the distractor selections, showing how multiple-choice questions alone fail to capture the comprehensive picture of student understanding. The comparison of textual analysis methods revealed the capability of automated lexical analysis software to assist in the identification of concepts and their relationships for large textual data sets. We also identified several challenges to using automated analysis as well as the manual and computer-assisted analysis. Conclusions: This study highlighted the usefulness incorporating and analysing students’ reasoning or explanations in understanding how students think about certain conceptual ideas. The ultimate value of automating the evaluation of written explanations is that it can be applied more frequently and at various stages of instruction to formatively evaluate conceptual understanding and engage students in reflective
Resumo:
BACKGROUND: Postural instability is one of the major complications found in stroke survivors. Parameterising the functional reach test (FRT) could be useful in clinical practice and basic research. OBJECTIVES: To analyse the reliability, sensitivity, and specificity in the FRT parameterisation using inertial sensors for recording kinematic variables in patients who have suffered a stroke. DESIGN: Cross-sectional study. While performing FRT, two inertial sensors were placed on the patient's back (lumbar and trunk). PARTICIPANTS: Five subjects over 65 who suffer from a stroke. MEASUREMENTS: FRT measures, lumbosacral/thoracic maximum angular displacement, maximum time of lumbosacral/thoracic angular displacement, time return initial position, and total time. Speed and acceleration of the movements were calculated indirectly. RESULTS: FRT measure is 12.75±2.06 cm. Intrasubject reliability values range from 0.829 (time to return initial position (lumbar sensor)) to 0.891 (lumbosacral maximum angular displacement). Intersubject reliability values range from 0.821 (time to return initial position (lumbar sensor)) to 0.883 (lumbosacral maximum angular displacement). FRT's reliability was 0.987 (0.983-0.992) and 0.983 (0.979-0.989) intersubject and intrasubject, respectively. CONCLUSION: The main conclusion could be that the inertial sensors are a tool with excellent reliability and validity in the parameterization of the FRT in people who have had a stroke.
Resumo:
Ambiguity validation as an important procedure of integer ambiguity resolution is to test the correctness of the fixed integer ambiguity of phase measurements before being used for positioning computation. Most existing investigations on ambiguity validation focus on test statistic. How to determine the threshold more reasonably is less understood, although it is one of the most important topics in ambiguity validation. Currently, there are two threshold determination methods in the ambiguity validation procedure: the empirical approach and the fixed failure rate (FF-) approach. The empirical approach is simple but lacks of theoretical basis. The fixed failure rate approach has a rigorous probability theory basis, but it employs a more complicated procedure. This paper focuses on how to determine the threshold easily and reasonably. Both FF-ratio test and FF-difference test are investigated in this research and the extensive simulation results show that the FF-difference test can achieve comparable or even better performance than the well-known FF-ratio test. Another benefit of adopting the FF-difference test is that its threshold can be expressed as a function of integer least-squares (ILS) success rate with specified failure rate tolerance. Thus, a new threshold determination method named threshold function for the FF-difference test is proposed. The threshold function method preserves the fixed failure rate characteristic and is also easy-to-apply. The performance of the threshold function is validated with simulated data. The validation results show that with the threshold function method, the impact of the modelling error on the failure rate is less than 0.08%. Overall, the threshold function for the FF-difference test is a very promising threshold validation method and it makes the FF-approach applicable for the real-time GNSS positioning applications.
Resumo:
A virtual power system can be interfaced with a physical system to form a power hardware-in-the-loop (PHIL) simulation. In this scheme, the virtual system can be simulated in a fast parallel processor to provide near real-time outputs, which then can be interfaced to a physical hardware that is called the hardware under test (HuT). Stable operation of the entire system, while maintaining acceptable accuracy, is the main challenge of a PHIL simulation. In this paper, after an extended stability analysis for voltage and current type interfaces, some guidelines are provided to have a stable PHIL simulation. The presented analysis have been evaluated by performing several experimental tests using a Real Time Digital Simulator (RTDS™) and a voltage source converter (VSC). The practical test results are consistent with the proposed analysis.
Resumo:
Acoustic emission technique has become a significant and powerful structural health monitoring tool for structures. Researches to date have been done on crack location, fatigue crack propagation in materials and severity assessment of failure using acoustic emission technique. Determining severity of failure in steel structures using acoustic emission technique is still a challenge to accurately determine the relationship between the severity of crack propagation and acoustic emission activities. In this study three point bending test on low carbon steel samples along with acoustic emission technique have been used to determine crack propagation and severity. A notch is introduced at the tension face of the loading point to the samples to initiate the crack. The results show that the percentage of load drop of the steel specimen has a reciprocal relationship with the crack opening i.e. crack opening zones are influenced by the loading rate. In post yielding region, common acoustic emission signal parameters such as, signal strength, energy and amplitudes are found to be higher than those at pre-yielding and at yielding.
Resumo:
The autonomous capabilities in collaborative unmanned aircraft systems are growing rapidly. Without appropriate transparency, the effectiveness of the future multiple Unmanned Aerial Vehicle (UAV) management paradigm will be significantly limited by the human agent’s cognitive abilities; where the operator’s CognitiveWorkload (CW) and Situation Awareness (SA) will present as disproportionate. This proposes a challenge in evaluating the impact of robot autonomous capability feedback, allowing the human agent greater transparency into the robot’s autonomous status - in a supervisory role. This paper presents; the motivation, aim, related works, experiment theory, methodology, results and discussions, and the future work succeeding this preliminary study. The results in this paper illustrates that, with a greater transparency of a UAV’s autonomous capability, an overall improvement in the subjects’ cognitive abilities was evident, that is, with a confidence of 95%, the test subjects’ mean CW was demonstrated to have a statistically significant reduction, while their mean SA was demonstrated to have a significant increase.
Resumo:
One of the riskiest activities in the course of a person's work is driving. By developing and testing a new work driving risk assessment measurement tool for use by organisations this research will contribute to the safety of those who drive for work purposes. The research results highlighted limitations associated with current self-report measures and provided evidence that the work driving environment is extremely complex and involves constant interactions between humans, vehicles, the road environment, and the organisational context.