989 resultados para Allylic oxidation
Resumo:
Microcystins (MCs) comprise a family of more than 80 related cyclic hepatotoxic heptapeptides. Oxidation of MCs causes cleavage of the chemically unique C-20 beta-amino acid (2S, 3S, 8S, 9S)-3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid (Adda) amino to form 2-methyl-3-methoxy-4-phenylbutanoic acid (MMPB), which has been exploited to enable analysis of the entire family. In the present study, the reaction conditions (e.g. concentration of the reactants. temperature and pH) used in the production of MMPB by oxidation of cyanobacterial samples with permanganate-periodate were optimized through a series of well-controlled batch experiments. The oxidation product (MMPB) was then directly analyzed by high-performance liquid chromatography with diode array detection. The results of this study provided insight into the influence of reaction conditions on the yield of MMPB. Specifically, the optimal conditions, including a high dose of permanganate (>= 50 mM) in saturated periodate solution at ambient temperature under alkaline conditions (pH similar to 9) over 1-4 h were proposed, as indicated by a MMPB yield of greater than 85%. The technique developed here was applied to determine the total concentration of MCs in cyanobacterial bloom samples, and indicated that the MMPB technique was a highly sensitive and accurate method of quantifying total MCs. Additionally, these results will aid in development of a highly effective analytical method for detection of MMPB as an oxidation product for evaluation of total MCs in a wide range of environmental sample matrices, including natural waters, soils (sediments) and animal tissues. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this study, the effect of dry oxidation on the electrochemical properties of carbon nanotube arrays is investigated. Oxygenated surface functional groups were introduced to the arrays by oxygen plasma treatment, where their surface concentrations were varied by controlling the exposure time. The finding presented herein shows an augmentation of nearly thirty times in term of specific capacitance when the arrays are oxidized. Similar behavior is also observed in the non-aqueous electrolytes where the specific capacitance of the oxidized carbon nanotube arrays is measured more than three times higher than that of the pristine ones. However, overexposure to oxygen plasma treatment reverses this effect. At such high oxidation level, the damage to the graphitic structure becomes more pronounced such that the capacitive behavior of the arrays is overshadowed by their resistive behavior. These findings are important for further development of carbon nanotube based electrochemical capacitors. © 2012 Materials Research Society.
Resumo:
Microcystins (MCs) are a family of related cyclic hepatotoxic heptapeptides, of which more than 70 types have been identified. The chemically unique nature of the C20 beta-amino acid, (2S, 3S, 8S, 9S)-3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca4,6-dienoic acid (Adda), portion of the MCs has been exploited to develop a strategy to analyze the entirety. Oxidation of MCs causes the cleavage of MC Adda to form 2-methyl-3-methoxy-4-phenylbutanoic acid (MMPB). In the present study, we investigated the kinetics of MMPB produced by oxidation of the most-often-studied MC variant, MC-LR (L = leucine, R = arginine), with permanganate-periodate. This investigation allowed insight regarding the influence of the reaction conditions (concentration of the reactants, temperature, and pH) on the conversion rate. The results indicated that the reaction was second order overall and first order with respect to both permanganate and MC-LR. The second-order rate constant ranged from 0.66 to 1.35 M/s at temperatures from 10 to 30 degrees C, and the activation energy was 24.44 kJ/mol. The rates of MMPB production can be accelerated through increasing reaction temperature and oxidant concentration, and sufficient periodate is necessary for the formation of MMPB. The initial reaction rate under alkaline and neutral conditions is higher than that under acidic conditions, but the former decreases faster than the latter except under weakly acidic conditions. These results provided new insight concerning selection of the permanganate-periodate concentration, pH, and temperature needed for the oxidation of MCs with a high and stable yield of MMPB.
Resumo:
The findings presented herein show that the electronic properties of CVD graphene on nickel can be altered from metallic to semiconducting by introducing oxygen adsorbates via UV/ozone or oxygen plasma treatment. These properties can be partially recovered by removing the oxygen adsorbates via vacuum annealing treatment. The effect of oxidation is studied by scanning tunneling microscopy/spectroscopy (STM/STS) and X-ray photoelectron spectroscopy (XPS). As probed by STM/STS, an energy gap opening of 0.11-0.15 eV is obtainable as the oxygen/carbon atomic ratio reaches 13-16%. The corresponding XPS spectra show a significant monotonic increase in the concentration of oxygenated functional groups due to the oxidation treatments. This study demonstrates that the opening of energy gap in CVD graphene can be reasonably controlled by a combination of UV/ozone or oxygen plasma treatment and vacuum annealing treatment. © 2013 Elsevier B.V.
Resumo:
Boron nitride nanotubes (BNNTs) are considered as a promising cold electron emission material owing to their negative electron affinity. BNNT field emitters show excellent oxidation endurance after high temperature thermal annealing of 600 °C in air ambient. There is no damage to the BNNTs after thermal annealing at a temperature of 600 °C and also no degradation of field emission properties. The thermally annealed BNNTs exhibit a high maximum emission current density of 8.39mA/cm2 and show very robust emission stability. The BNNTs can be a promising emitter material for field emission devices under harsh oxygen environments. © 2014 AIP Publishing LLC.
Resumo:
The influence of the turbulence-chemistry interaction (TCI) for n-heptane sprays under diesel engine conditions has been investigated by means of computational fluid dynamics (CFD) simulations. The conditional moment closure approach, which has been previously validated thoroughly for such flows, and the homogeneous reactor (i.e. no turbulent combustion model) approach have been compared, in view of the recent resurgence of the latter approaches for diesel engine CFD. Experimental data available from a constant-volume combustion chamber have been used for model validation purposes for a broad range of conditions including variations in ambient oxygen (8-21% by vol.), ambient temperature (900 and 1000 K) and ambient density (14.8 and 30 kg/m3). The results from both numerical approaches have been compared to the experimental values of ignition delay (ID), flame lift-off length (LOL), and soot volume fraction distributions. TCI was found to have a weak influence on ignition delay for the conditions simulated, attributed to the low values of the scalar dissipation relative to the critical value above which auto-ignition does not occur. In contrast, the flame LOL was considerably affected, in particular at low oxygen concentrations. Quasi-steady soot formation was similar; however, pronounced differences in soot oxidation behaviour are reported. The differences were further emphasised for a case with short injection duration: in such conditions, TCI was found to play a major role concerning the soot oxidation behaviour because of the importance of soot-oxidiser structure in mixture fraction space. Neglecting TCI leads to a strong over-estimation of soot oxidation after the end of injection. The results suggest that for some engines, and for some phenomena, the neglect of turbulent fluctuations may lead to predictions of acceptable engineering accuracy, but that a proper turbulent combustion model is needed for more reliable results. © 2014 Taylor & Francis.
Resumo:
The occurrence of the microcystins in the water bodies, especially in drinking water resources, has received considerable attentions. In situ chemical oxidation is a promising cost-effective treatment method to remove MC from water body. This research investigated the reaction kinetics of the oxidation of MCRR by permanganate. Experimental results indicate that the reaction is second order overall and first order with respect to both permanganate and MCRR, and has an activation energy of 18.9 kJ/mol. The second-order rate constant ranges from 0.154 to 0.225 l/mg/min at temperature from 15 to 30 degrees C. The MCRR degradation rates can be accelerated through increasing reaction temperature and oxidant concentration. The reaction under acid conditions was slightly faster than under alkaline conditions. The half-life of the reaction was less than 1 min, and more than 99.5% of MCRR was degraded within 10 min. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The exponential degradation of the photoluminescence (PL) intensity at the near-band-gap was observed in heavily doped or low-quality GaN with pristine surface under continuous helium-cadmium laser excitation. In doped GaN samples, the degradation speed increased with doping concentration. The oxidation of the surface with laser irradiation was confirmed by x-ray photoemission spectroscopy measurements. The oxidation process introduced many oxygen impurities and made an increase of the surface energy band bending implied by the shift of Ga 3d binding energy. The reason for PL degradation may lie in that these defect states act as nonradiative centers and/or the increase of the surface barrier height reduces the probability of radiative recombination.
Resumo:
The chemical properties of AlxGa1-xN surfaces exposed to air for different time periods are investigated by atomic force microscopy (AFM), photoluminescence (PL) measurement and X-ray photoelectron spectroscopy (XPS). PL and AFM results show that AlxGa1-xN samples exhibit different surface characteristics for different air-exposure times and Al contents. The XPS spectra of the Al 2p and Ga 2p core levels indicate that the peaks shifted slightly, from an Al-N to an Al-O bond and from a Ga-N to a Ga-O bond. All of these results show that the epilayer surface contains a large amount of Ga and Al oxides. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
X-ray photoelectron spectroscopy has been used to characterize the oxidation states in Ta/NiOx/Ni-81/Fe-19/Ta magnetic multilayers prepared by rf reaction and dc magnetron sputtering. The exchange coupling field and the coercivity of NiOx/Ni81Fe19 are studied as a function of the ratio of Ar to O-2 during the deposition process. The chemical states of Ni atoms in the interface region of NiOx/NiFe have also been investigated by x-ray photoelectron spectroscopy and the peak decomposition technique. The results show that the ratio of Ar to O-2 has a great effect on the chemical states of nickel in NiOx films. Thus the exchange coupling field and the coercivity of Ta/NiOx/Ni81Fe19/Ta are seriously affected. Also, the experiment shows that x-ray photoelectron spectroscopy is a powerful tool in characterizing magnetic multilayers.
Resumo:
The effects of the carrier gas flow and water temperature on the oxidation rate for different reaction temperatures were investigated. The optimum conditions for stable oxidation were obtained. Two mechanisms of the oxidation process are revealed. One is the flow-controlling process, which is unstable. The other is the temperature-controlling process, which is stable. The stable region decreases for higher reaction temperatures. The simulation results for the stable oxidation region are also given. With optimum oxidation conditions, the stability and precision of the oxidation can be dramatically improved.
Resumo:
High-power strain-compensated In1-xGaxAs/ln(1-y)Al(y)As quantum cascade lasers (lambda similar to 5.5 mu m) are demonstrated. Peak power at least 1.2W per facet for a 32 mu mx2mm uncoated laser stored in ambient condition for 240 days, is obtained at 80 K. Considering the collection efficiency of 60%, the actual output power is 4W at this temperature.
Resumo:
With naphthalene as biomass tar model compound, partial oxidation reforming (with addition of O-2) and dry reforming of biomass fuel gas were investigated over nickel-based monoliths at the same conditions. The results showed that both processes had excellent performance in upgrading biomass raw fuel gas. Above 99% of naphthalene was converted into synthesis gases (H-2+CO). About 2.8 wt% of coke deposition was detected on the catalyst surface for dry reforming process at 750 degrees C during 108 h lifetime test. However, no Coke deposition was detected for partial oxidation reforming process, which indicated that addition of O-2 can effectively prohibit the coke formation. O-2 Can also increase the CH4 conversion and H-2/CO ratio of the producer gas. The average conversion of CH4 in dry and partial oxidation reforming process was 92% and 95%, respectively. The average H-2/CO ratio increased from 0.95 to 1.1 with the addition of O-2, which was suitable to be used as synthesis gas for dimethyl ether (DME) synthesis.