960 resultados para Acidogenic fermentation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Translated from the French.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Translated from the French.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhizopus arrhizus, strain DAR 36017, produced L(+)-lactic acid in a simultaneous saccharification and fermentation process using starch waste effluents. Lactic acid at 19.5 - 44.3 g l(-1) with a yield of 0.85 - 0.96 g g(-1) was produced in 40 h using 20 - 60 g starch l(-1). Supplementation of nitrogen source may be unnecessary if potato or corn starch waste effluent was used as a production medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fungal species of Rhizopus oryzae 2062 has the capacity to carry out a single stage fermentation process for lactic acid production from potato starch wastewater. Starch hydrolysis, reducing sugar accumulation, biomass formation, and lactic acid production were affected with variations in pH, temperature, and starch source and concentration. A growth condition with starch concentration approximately 20 g/L at pH 6.0 and 30degreesC was favourable for starch fermentation, resulting in a lactic acid yield of 78.3%similar to85.5% associated with 1.5similar to2.0 g/L fungal biomass produced in 36 h of fermentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biochemical kinetic of direct fermentation for lactic acid production by fungal species of Rhizopus arrhizus 3,6017 and Rhizopus oryzae 2,062 was studied with respect to growth pH, temperature and substrate. The direct fermentation was characterized by starch hydrolysis, accumulation of reducing sugar, and production of lactic acid and fungal biomass. Starch hydrolysis, reducing sugar accumulation, biomass formation and lactic acid production were affected with the variations in pH, temperature, and starch source and concentration. A growth condition with starch concentration approximately 20 g/l at pH 6.0 and 30 degrees C was favourable for both starch saccharification and lactic acid fermentation, resulting in lactic acid yield of 0.87-0.97 g/g starch associated with 1.5-2.0 g/l fungal biomass produced in 36 h fermentation. R. arrhizus 3,6017 had a higher capacity to produce lactic acid, while R. oryzae 2,062 produced more fungal biomass under similar conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biochemical kinetic of simultaneous saccharification and fermentation (SSF) for lactic acid production by fungal species of Rhizopus arrhizus 36017 and Rhizopus oryzae 2062 was studied with respect to growth pH, temperature and substrate. Both R. arrhizus 36017 and R. oryzae 2062 had a capacity to carry out a single stage SSF process for lactic acid production from potato starch wastewater. The kinetic characteristics, termed as starch hydrolysis, accumulation of reducing sugars, lactic acid production and fungal biomass formation, were affected with variations in pH, temperature, and starch source and concentration. A growth condition with starch concentration approximately 20 g/l at pH 6.0 and 30 degrees C was favourable for both starch saccharification and lactic acid fermentation, resulting in lactic acid yield of 0.85-0.92 g/g associated with 1.5-3.5 g/l fungal biomass produced in 36-48 h fermentation. R. arrhizus 36017 had a higher capacity to produce lactic acid, while R. oryzae 2062 produced more fungal biomass under similar conditions. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gelation profile of yoghurts from conventionally treated (85 degrees C/30 min) and UHT treated (143 degrees C/6s) milks at 16, 18, and 20% total solids was analyzed during fermentation for 4 hrs using the invasive Rapid Visco Analyzer (RVA) and the non-invasive ultrasonic spectroscope. The viscosity measured by the RVA and the ultrasonic velocity measured by the ultrasonic spectroscope exhibited similar sigmoid trends with respect to fermentation time. The ultrasonic spectroscope detected the onset of gelation of yoghurt milk earlier (by an average of 52 min) than did the RVA, indicating a higher sensitivity of ultrasonic spectroscopy. The delay of gelation time of UHT-treated yoghurt milk as compared to conventionally treated yoghurt milk was detected by both techniques. A non-significant ( P > 0.05) effect of solids content in the yoghurt milks on their gelation time was also observed by both instruments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several fermentation methods for the production of the enzyme dextransucrase have been employed. The theoretical aspects of these fermentation techniques have been given in the early chapters of this thesis together with a brief overview of enzyme biotechnology. A literature survey on cell recycle fermentation has been carried out followed by a survey report on dextransucrase production, purification and the reaction mechanism of dextran biosynthesis. The various experimental apparatus as employed in this research are described in detail. In particular, emphasis has been given to the development of continuous cell recycle fermenters. On the laboratory scale, fed-batch fermentations under anaerobic low agitation conditions resulted in dextransucrase activities of about 450 DSU/cm3 which are much higher than the yields reported in the literature and obtained under aerobic conditions. In conventional continuous culture the dilution rate was varied in the range between 0.375 h-1 to 0.55 h-1. The general pattern observed from the data obtained was that the enzyme activity decreased with increase in dilution rate. In these experiments the maximum value of enzyme activity was ∼74 DSU/cm3. Sparging the fermentation broth with CO2 in continuous culture appears to result in a decrease in enzyme activity. In continuous total cell recycle fermentations high steady state biomass levels were achieved but the enzyme activity was low, in the range 4 - 27 DSU/cm3. This fermentation environment affected the physiology of the microorganism. The behaviour of the cell recycle system employed in this work together with its performance and the factors that affected it are discussed in the relevant chapters. By retaining the whole broth leaving a continuous fermenter for between 1.5 - 4 h under controlled conditions, the enzyme activity was enhanced with a certain treatment from 86 DSU/cm3 to 180 DSU/cm3 which represents a 106% increase over the enzyme activity achieved by a steady-state conventional chemostat. A novel process for dextran production has been proposed based on the findings of this latter part of the experimental work.