983 resultados para Absorption coefficient, 300 nm


Relevância:

100.00% 100.00%

Publicador:

Resumo:

研究了γ-辐照前后纯Y2SiO5和Eu^3+掺杂的Y2SiO5晶体吸收光谱的变化,辐照后,未退火和氢气退火的纯Y2SiO5晶体在260-270nm和320nm波段产生了附加吸收峰,分别是由F心和O^-心的吸收引起的;经过空气退火的纯YSO晶体中,由于消除了氧空位,因此辐照后没有出现色心吸收峰。在Eu^3+;Y2SiO5晶体中,不但有相同的F心和O心吸收峰,而且还有Eu^2+离子在300nm和390nm的吸收峰。随着辐照剂量的增加,色心附加吸收峰增强。空气退火能减少Eu^3+:Y2SiO5晶体中的色心,而氢

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Undoped Y2SiO5 single crystal was grown by the Czochralski method. The samples were optically polished after orienting and cutting. The rhombus and quadrangular dislocation etching pits, the low-angle grain boundaries and the inclusions in the samples were observed using optical microscope and scanning electron microscope. The absorption spectra were measured before and after H-2 annealing or air annealing. The absorption edge of Y2SiO5 crystal was determined to be about 202 nm. The absorption coefficient of Y2SiO5 crystal decreased after H-2 annealing and obviously increased after air annealing. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Beta gallium oxide (beta-Ga2O3) single crystals were grown by the floating zone technique. The absorption spectra and the luminescence of the crystals were measured. The absorption spectra showed an intrinsic short cutoff edge around 260 nm with two shoulders at 270 and 300 nm. Not only the characteristic UV (395 nm), blue (471 nm) and green (559 nm) lights, but also the red (692 nm) light can be seen in the emission spectra. The deep UV light was attributed to the existing of quantum wells above the valence band and the red light was owed to the electron-hole recombination via the vicinity donors and acceptors. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large ruby with the size of circle divide75 x 45 mm was grown by temperature gradient technique for the first time. Absorption spectrum was carried out in the range of 190-800 nm by spectrophotometer, and the concentration spatial distribution of Cr3+ in ruby was calculated from the absorption coefficient that based on the Beer-Lambert's Law. Cr3+ ions gradually increase alone both the growth axis and the radial direction. The shape and ingredient of the inclusions were measured by means of Leitz ride field microscopy and scanning electron microscopy. Lane photos and X-ray omega scan show the good quality of as grown ruby. The optimized growth conditions were pointed out based on the observation. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Five absorption hands, at 227, 300 340, 370 and 457nm, were observed in the optical absorption spectrum of Ce:Y3Al5O12 (Ce:YAG) crystals grown by the temperature gradient technique (TGT). The absorption bands at 227, 340, and 457 nm were identified Lis belonging to the Ce3+ -ion in the YAG crystal. A near UV optical emission band at 398nm was observed. with an excitation spectrum containing two bands, at 235 and 370nm. No fluorescence was detected under 300 nm excitation. The pair of absorption bands at 235 and 370 nm and the absorption band at 300 nm were attributed to the F- and F+-type color centers, respectively. The color centers model was also applied to explain the spectral changes in the Ce:YAG (TGT) crystal, including the reduction in the Ce 31 -ion absorption intensity, after annealing in an oxidizing atmosphere (air). (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Yb (10%):GGG and Yb (30%): GGG crystals have been grown by the Czochralski method. The chemical compositions are: Yb1.07Gd1.74Ga5.19O12 and Yb0.33Gd1.47Ga5.2O12. The absorption and emission spectra of Yb:GGG crystal at room temperature have been measured. The spectroscopic parameters of Yb:GGG and Yb:YAG have been compared. Optical absorption spectra of Yb:GGG show 4f-4f transitions related to Gd3+ ion around 300 nm, and also an onset of charge transfer (CT) transitions from oxygen ligands to Gd3+ or Yb3+ cations below 240nm. The CT absorption of Yb3+ is largely overlapped by that of Gd3+ ions. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Absorption of host and the temperature-dependence of absorption coefficient have been considered in evaluating temperatures distribution in films, when laser pulse irradiates on films. Absorption of dielectric materials experience three stages with the increase of temperature: multi-photon absorption; single photon absorption; metallic absorption. These different absorption mechanisms correspond to different band gap energies of materials, which will decrease when the temperature of materials increases. evaluating results indicate that absorption of host increases rapidly when the laser pulse will be over. If absorption of host and the temperature-dependence of absorption are considered, the material temperatures in films will be increased by a factor of four.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the first time, lasers have been used to induce a fast all-optical nonresonant nonlinearity at wavelengths well beyond the band edge in a GaAs/GaAlAs multiquantum well waveguide. Using a Q-switched diode laser, which gave optical pulses of 3.5 ps duration and 7 W peak power, an intensity-dependent transmission was recorded that was consistent with the presence of two photon absorption in the waveguide. The measured two photon absorption coefficient was 11 ± 2cm/GW.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photon absorption in Si quantum dots (QDs) embedded in SiO2 has been systematically investigated by varying several parameters of the QD synthesis. Plasma-enhanced chemical vapor deposition (PECVD) or magnetron cosputtering (MS) have been used to deposit, upon quartz substrates, single layer, or multilayer structures of Si-rich- SiO2 (SRO) with different Si content (43-46 at. %). SRO samples have been annealed for 1 h in the 450-1250 °C range and characterized by optical absorption measurements, photoluminescence analysis, Rutherford backscattering spectrometry and x-ray Photoelectron Spectroscopy. After annealing up to 900 °C SRO films grown by MS show a higher absorption coefficient and a lower optical bandgap (∼2.0 eV) in comparison with that of PECVD samples, due to the lower density of Si-Si bonds and to the presence of nitrogen in PECVD materials. By increasing the Si content a reduction in the optical bandgap has been recorded, pointing out the role of Si-Si bonds density in the absorption process in small amorphous Si QDs. Both the photon absorption probability and energy threshold in amorphous Si QDs are higher than in bulk amorphous Si, evidencing a quantum confinement effect. For temperatures higher than 900 °C both the materials show an increase in the optical bandgap due to the amorphous-crystalline transition of the Si QDs. Fixed the SRO stoichiometry, no difference in the optical bandgap trend of multilayer or single layer structures is evidenced. These data can be profitably used to better implement Si QDs for future PV technologies. © 2009 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Helmholtz resonators are commonly used as absorbers of incident acoustic power. Theoretical and experimental investigations have been performed in the four cases of no mean flow, grazing mean flow, bias mean flow and a combination of grazing and bias mean flows. In the absence of a mean flow, the absorption coefficient (deflned as the proportion of incident energy absorbed) is a non-linear function of the acoustic pressure and high incident acoustic pressures are required before the absorption becomes signiflcant. In contrast, when there is a mean flow present, either grazing or bias, the absorption is linear and thus absorption coefficient is independent of the magnitude of the acoustic pressure, and absorption is obtained over a wider range of frequencies. Non-linear effects are only discernible very close to resonance and at very-high amplitude. With grazing mean flow, there is the undesirable effect that sound can be generated over a range of frequencies due to the interaction between the unsteadily shed vorticity waves and the downstream edge of the aperture. This production is not observed when there is a bias flow because here the vorticity is shed all around the rim of the aperture and swept away by the mean flow. When there is both a grazing mean flow and a mean bias flow, we flnd that only a small amount of bias mean flow, compared with grazing mean flow, is required to destroy the production of acoustic energy. © 2002 by the author(s). Published by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hole subband structures and effective masses of tensile strained Si/Si1-yGey quantum wells are calculated by using the 6x6 k.p method. The results show that when the tensile strain is induced in the quantum well, the light-hole state becomes the ground state, and the light hole effective masses in the growth direction are strongly reduced while the in-plane effective masses are considerable. Quantitative calculation of the valence intersubband transition between two light hole states in a 7nm tensile strained Si/Si0.55Ge0.45 quantum well grown on a relaxed Si0.5Ge0.5 (100) substrates shows a large absorption coefficient of 8400 cm(-1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From the effective absorption coefficient of bonded interface and the relationship of interface to reflectivity at cavity mode for double bonded vertical cavity laser, it can be seen that bonded interfaces should be positioned at the null of standing wave distribution, and the thickness of interface should be less than 20 nm. Using the finite elements method, the temperature contour map of laser can be calculated. Results showed that the influence of thin interface to thermal characteristics of VCSELS is slight, while thick interface will lead to temperature increase of active region. SEM images demonstrate that hydrophobic bonding is suitable for the fabrication of the device, while hydrophilic bonding interface is unfavorable to optical and thermal properties of devices with interface thickness larger than 40 nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the temperature dependence of absorption edge of GaN thin films grown on sapphire substrate by metal-organic chemical vapor deposition using optical absorption spectroscopy. A shift in absorption edge of about 55 meV has been observed in temperature range 273-343 K. We have proposed a theoretical model to find the energy gap from absorption coefficient using alpha = alpha(max) + (alpha(min) - alpha(max))/[1 + exp 2(E - E-g + KT)/KT]. Temperature dependence of band gap has also been studied by finding an appropriate theoretical fit to our data using E-g(T) = E-g(273 K) - (8.8 x 10(-4)T(2))/(483 + T) + 0.088 (Varshni empirical formula) and E-g(T) = E-g(273 K)-0.231447/[exp(362/T)-1] + 0.082 relations. It has been found that data can be fitted accurately after adding a factor similar to 0.08 in above equations. Debye temperature (483 K) and Einstein temperature (362 K) in the respective equations are found mutually in good agreement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Guest host polymer thin films of polymethyl methacrylate (PMMA) incorporated with (4'-nitrobenzene)-3-azo-9-ethylcarbazole (NAEC) were fabricated by spin coating and then poled by the method of corona-onset poling at elevated temperature. The absorption mechanism of the polymeric film, which is very important for the optical transmission losses and directly relates to the orientation of chromophore NAEC in polymer PMMA, was investigated in detail. From the UV-visible absorption spectra for NAEC/PMMA film before and after being poled, we determined the change of absorption coefficient kappa with the wavelength and approximately calculated the maximum absorption A(parallel tomax) as 3.46 for incident light propagating parallel through the film, i.e. the ordinary polarized light, which cannot be directly measured in the spectro photometer. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline silicon (nc-Si) embedded SiO2 matrix has been formed by annealing the SiOx films fabricated by plasma-enhanced chemical vapor deposition (PECVD) technique. Absorption coefficient and photoluminescence of the films have been measured at room temperature. The experimental results show that there is an "aUrbach-like" b exponential absorption in the spectral range of 2.0-3.0 eV. The relationship of (alpha hv)(1/2) proportional to(hv - E-g) demonstrates that the luminescent nc-Si have an indirect band structure. The existence of Stokes shift between photoluminescence and absorption edge indicates that radiative combination can take place not only between electron states and hole states but also between shallow trap states of electrons and holes. (C) 2000 Elsevier Science B.V. All rights reserved.