996 resultados para AMORPHOUS SIO2
Resumo:
The high reflection (HR) mirror composed of dielectric stacks with excellent spectrum characteristics and high damage resistant ability is critical for fabricating multilayer dielectric (MLD) grating for pulse compressor. The selection of the SiO2 material as the top layer of the HR mirror for grating fabrication is beneficial for improving the laser-induced damage threshold of MLD grating as well as minimizing the standing-wave effect in the photoresist during the exposure process. Based on an (HLL) H-9 design comprising quarter-waves of HfO2 ( H) and half-waves of SiO2 ( L), we obtain an optimal design of the HR mirror for MLD grating, the SiO2 top layer of which is optimized with a merit function including both the diffraction efficiency of the MLD grating and the electric field enhancement in the grating. Dependence of the performance of the MLD grating on the fabrication error of the dielectric mirror is analysed in detail. The HR mirror is also fabricated by E-beam evaporation, which shows good spectral characteristics at the exposure wavelength of 413 nm and at the operation wavelength of 1053 nm and an average damage threshold of 10 J cm(-2) for a 12 ns pulse.
Resumo:
Two kinds of HfO2/SiO2 800 nm high-reflective (HR) coatings, with and without SiO2 protective layer were deposited by electron beam evaporation. Laser-induced damage thresholds (LIDT) were measured for all samples with femtosecond laser pulses. The surface morphologies and the depth information of all samples were observed by Leica optical microscopy and WYKO surface profiler, respectively. It is found that SiO2 protective layer had no positive effect on improving the LIDT of HR coating. A simple model including the conduction band electron production via multiphoton ionization and impact ionization is used to explain this phenomenon. Theoretical calculations show that the damage occurs first in the SiO2 protective layer for HfO2/SiO2 HR coating with SiO2 protective layer. The relation of LIDT for two kinds of HfO2/SiO2 HR coatings in calculation agrees with the experiment result. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The mechanism of improving 1064 nm, 12 ns laser-induced damage threshold (LIDT) of TiO2/SiO2 high reflectors (HR) prepared by electronic beam evaporation from 5.1 to 13.1 J/cm(2) by thermal annealing is discussed. Through optical properties, structure and chemical composition analysis, it is found that the reduced atomic non-stoichiometric defects are the main reason of absorption decrease and LIDT rise after annealing. A remarkable increase of LIDT is found at 300 degrees C annealing. The refractive index and film inhomogeneity rise, physical thickness decrease, and film stress changes from compress stress to tensile stress due to the structure change during annealing. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
研究了电子束蒸发制备的HfO2/SiO2高反膜在1064nm与532nm激光辐照下的损伤行为。基频激光辐照时损伤形貌主要为节瘤缺陷喷溅留下的锥形坑。当能量密度较大时出现分层剥落;二倍频激光损伤主要是由电子缺陷引起的平底坑,辐照脉冲能量密度稍高时也会产生吸收性缺陷引起的锥形坑,但电子缺陷的损伤阈值更低;随着辐照脉冲能量密度的增大分层剥落逐渐成为主要的损伤形貌。分析认为,辐照激光波长的变化。引起吸收机制的变化从而导致了损伤阈值及损伤机制的差异。
Resumo:
Al2O3/SiO2 films have been deposited as UV antireflection coatings on 4H-SiC by electron-beam evaporation and characterized by reflection spectrum, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The reflectance of the Al2O3/SiO2 films is 0.33% and 10 times lower than that of a thermally grown SiO2 single layer at 276 nm. The films are amorphous in microstructure and characterize good adhesion to 4H-SiC substrate. XPS results indicate an abrupt interface between evaporated SiO2 and 4H-SiC substrate free of Si-suboxides. These results make the possibility for 4H-SiC based high performance UV optoelectronic devices with Al2O3/SiO2 films as antireflection coatings. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Al2O3/SiO2 films have been prepared by electron-beam evaporation as ultraviolet (UV) antireflection coatings on 4H-SiC substrates and annealed at different temperatures. The films were characterized by reflection spectra, ellipsometer system, atomic force microscopy (AFM), X-ray diffraction (XRD) and Xray photoelectron spectroscopy (XPS), respectively. As the annealing temperature increased, the minimum reflectance of the films moved to the shorter wavelength for the variation of refractive indices and the reduction of film thicknesses. The surface grains appeared to get larger in size and the root mean square (RMS) roughness of the annealed films increased with the annealing temperature but was less than that of the as-deposited. The Al2O3/SiO2 films maintained amorphous in microstructure with the increase of the temperature. Meanwhile, the transition and diffusion in film component were found in XPS measurement. These results provided the important references for Al2O3/SiO2 films annealed at reasonable temperatures and prepared as fine anti-reflection coatings on 4H-SiC-based UV optoelectronic devices. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
用电子束蒸发方法在BK7基底上沉积了HfO2/SiO2多层膜。研究了200℃到400℃的退火对残余应力的影响。结果表明退火前的薄膜残余应力为压应力,在200℃退火后发展为张应力,然后张应力值随着退火温度的升高而增大。在400℃退火后,由于张应力太大,薄膜表面出现了裂纹。同时,随着退火温度的升高,晶粒尺寸长大,晶面间距降低。残余应力的变化与结构的演变相对应。
Resumo:
Ta2O5薄膜采用传统的电子束蒸发方法沉积在BK7基底上。文中对SiO2保护层和退火对Ta2O5薄膜的激光损伤阈值的不同影响进行了研究。结果表明,SiO2保护层不会影响薄膜内的电场分布,薄膜微结构和微缺陷密度,但是会使薄膜的吸收稍微增大;而退火对降低薄膜的微缺陷密度和吸收较有效。SiO2保护层和退火都有利于提高Ta2O5薄膜的抗激光损伤能力,并且退火对提高阈值的影响更为明显。此外,采用SiO2保护层和退火结合的方法,获得了具有最大激光损伤阈值的薄膜。
Resumo:
Ta2O5 films were deposited using the conventional electron beam evaporation method and then annealed at temperatures in the range 373-673 K. Chemical composition, scattering and absorption were examined by X-ray photoelectron spectroscopy (XPS), total integrated scattering (TIS) measurement and the surface thermal lensing (m) technique, respectively. The laser-induced damage threshold (LIDT) was assessed using the output from an Nd:YAG laser with a pulse length of 12 ns. The results showed that the improvement of the LIDT after annealing was due to the reduced substoichiometric and structural defects present in the film. The LIDT increased slightly below 573K and then increased significantly with increase in annealing temperature, which could be attributed to different dominant defects. Moreover, the root mean square (RMS) roughness and scattering had little effect on the LIDT, while the absorption and the LIDT were in accord with a general relation. (c) 2008 Elsevier Ltd. All rights reserved.