935 resultados para ALDOL REACTIONS
Resumo:
Heck coupling reactions of methyl acrylate with various aryl bromides have been investigated using a Pd/TPP catalyst in toluene under pressurized CO2 conditions up to 13 MPa. Although CO2 is not a reactant, the pressurization of the reaction liquid phase with CO2 has positive and negative impacts on the rate of Heck coupling depending on the structures of the substrates examined. In the case of either 2-bromoacetophenone or 2-bromocinnamate, the conversion has a maximum at a CO2 pressure of about 3 MPa;
Resumo:
This paper describes the synthesis and selected reactions of a series of crystalline mono(beta-diiminato) yttrium chlorides 3a, 3b, 4a, 4b, 5a, 5b, 5c and 9. The X-ray structure of each has been determined, as well as of [YCl(L-4)(2)] (6), [Y(L-1)(2)OBut] (7) and [Y{CH(SiMe3)(2)}(thf)(mu-Cl)(2)Li(OEt2)(2)(mu-Cl)](2) (8).
Resumo:
A series Of pyrrolidine-triazole based dendritic catalysts have been synthesized and applied directly in the asymmetric Michael addition of ketones to nitroolefins without the use of an organic solvent. Good yields (up to 99%), and high diastereoselectivities (up to syn/anti = 45:1) and enantioselectivities (up to 95% ee) have been obtained. Furthermore. the third generation catalyst can be reused at least five times without significant loss of catalytic activity. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The potential of CO2-expanded liquid media for chemical reactions has been examined in this work, using cyclohexane as a solvent and Pd/C as a heterogeneous catalyst for hydrogenation of styrene, citral, and nitrobenzene with H-2. The rate of hydrogenation reactions is increased, and the product selectivity is altered in the CO2-expanded cyclohexane phase. In the hydrogenation of citral, the selectivity to citronellal decreases with CO2 pressure, which changes from similar to 80% in the neat cyclohexane to similar to 65% at 16 MPa.
Resumo:
The Heck reaction of iodobenzene and methyl acrylate was investigated with CO2-philic Pd complex catalysts having fluorous ponytails and the organic base triethylamine (Et3N) in the presence of CO2 under solventless conditions at 80 degrees C. The catalysts are not soluble in the organic phase in the absence Of CO2 and the reaction occurs in a solid-liquid biphasic system. When the organic liquid mixture is pressurized by CO2, CO2 is dissolved into the organic phase and this promotes the dissolution of the I'd complex catalysts. As a result, the Heck reaction occurs homogeneously in the organic phase, which enhances the rate of reaction. This positive effect Of CO2 pressurization competes with the negative effect that the reacting species are diluted by an increasing amount of CO2 molecules dissolved. Thus, the maximum conversion appears at a CO2 pressure of around 4 MPa under the present reaction conditions. The catalysts are separated in the solid granules by depressurization and are recyclable without loss of activity after washing with n-hexane and/or water.
Resumo:
A facile and efficient synthesis Of Substituted pyridin-2(1H)-ones has been developed by the reaction of readily available 1-carbamoyl-]-[3-(dimethylamino)propenoyl]cyclopropanes with phosphoryl chloride or phosphorus tribromide in dichloromethane at room temperature.
Resumo:
The electrochemical properties of a series of structurally related fullerooxazoles, [6,6] cyclic phenylimidate C-60 (1), 1,2-benzal-3-N-4-O-cyclic phenylimidate C-60 (2), and 1,4-dibenzyl-2,3-cyclic phenylimidate C-60 (3), are described, and the spectroscopic characterizations of their anionic species are reported. The results show that compounds I and 2 undergo retro-cycloaddition reactions that lead to the formation of C-60 and C61HPh, respectively, upon two-electron-transfer reduction. However, compound 3 demonstrates much more electrochemical stability as no retro-cycloaddition reaction occurs under similar conditions. Natural bond orbital (NBO) calculations on charge distribution show there is no significant difference among the dianions of 1, 2, and 3, indicating that the electrochemical stability of 3 is unlikely to be caused by the charge distribution difference of the dianions of three compounds. Examination on the crystal structure of compound 3 reveals close contacts of the C-H group with the heteroatoms (N and O) of cyclic phenylimidate, suggesting the existence of C-H center dot center dot center dot X (X = N, O) intramolecular hydrogen bonding among the addends, which is further confirmed by NBO analysis.
Resumo:
In this paper, a novel template of carbon foam is used in building hierarchical structures of TiO2, CeO2, and ZrO2. They had multiscale morphologies, from nanowalls, nanoparticles to layer nanostructures. Oil a hundred-micron scale, the product was a sponge-like material constructed by nanowalls. On a hundred-nanometer scale, the electron microscope images showed that the nanowalls were porous and assembled by polycrystalline nanoparticles. Meanwhile, on one nanometer scale, many nanoparticles exhibited layer nanostructures with about 1.1 run of thickness and spacing. In mechanism section, the process analysis and characterizations suggested that the hierarchical structures were the combined result of two templates in a "one-pot" reaction. The mesoporous nanowalls were derived from carbon foams, while the layer nanostructures were the replicas of graphite sheets. The method has potential utilizations in preparation of various adsorbent and catalyst.
Resumo:
A convenient and efficient synthesis of highly substituted pyrrolin-4-ones is developed via the PIFA-mediated cyclization reactions of readily available enaminones, and a mechanism involving sequential cleavage of N-C bond, formation of new N-C bond, intramolecular addition reaction, and benzilic acid type rearrangement is proposed.
Resumo:
A facile and efficient one-pot synthesis of highly substituted pyridin-2(IH)-ones was developed via Vilsmeier-Haack reactions of readily available enaminones, 2-arylamino-3-acetyl-5,6-dihydro-4H-pyrans, and a mechanism involving sequential ring-opening, haloformylation, and intramolecular nucleophilic cyclization reactions is proposed.
Resumo:
3-[Bis(ethylthio)methylene]pentane-2,4-dione (1a) and 3-[bis(benzylthio)methylene]pentane-2,4-dione (1b) have been investigated as non-thiolic and odorless thiol equivalents in thia-Michael addition reactions. In the presence of aqueous p-dodecyl benzenesulfonic acid (DBSA), compound (1) was cleaved and the generated thiols underwent facile conjugate addition to alpha,beta-unsaturated ketones 2 in-situ, affording the corresponding beta-keto sulfides (3) in good yields.