962 resultados para traffic flow stability


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper presents a new network-flow interpretation of Łukasiewicz’s logic based on models with an increased effectiveness. The obtained results show that the presented network-flow models principally may work for multivalue logics with more than three states of the variables i.e. with a finite set of states in the interval from 0 to 1. The described models give the opportunity to formulate various logical functions. If the results from a given model that are contained in the obtained values of the arc flow functions are used as input data for other models then it is possible in Łukasiewicz’s logic to interpret successfully other sophisticated logical structures. The obtained models allow a research of Łukasiewicz’s logic with specific effective methods of the network-flow programming. It is possible successfully to use the specific peculiarities and the results pertaining to the function ‘traffic capacity of the network arcs’. Based on the introduced network-flow approach it is possible to interpret other multivalue logics – of E.Post, of L.Brauer, of Kolmogorov, etc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two new types of phenolic resin-derived synthetic carbons with bi-modal and tri-modal pore-size distributions were used as supports for Pd catalysts. The catalysts were tested in chemoselective hydrogenation and hydrodehalogenation reactions in a compact multichannel flow reactor. Bi-modal and tri-modal micro-mesoporous structures of the synthetic carbons were characterised by N2 adsorption. HR-TEM, PXRD and XPS analyses were performed for characterising the synthesised catalysts. N2 adsorption revealed that tri-modal synthetic carbon possesses a well-developed hierarchical mesoporous structure (with 6.5 nm and 42 nm pores), contributing to a larger mesopore volume than the bi-modal carbon (1.57 cm3 g-1versus 1.23 cm3 g-1). It was found that the tri-modal carbon promotes a better size distribution of Pd nanoparticles than the bi-modal carbon due to presence of hierarchical mesopore limitting the growth of Pd nanoparticles. For all the model reactions investigated, the Pd catalyst based on tri-modal synthetic carbon (Pd/triC) show high activity as well as high stability and reproducibility. The trend in reactivities of different functional groups over the Pd/triC catalyst follows a general order alkyne ≫ nitro > bromo ≫ aldehyde.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Buffered crossbar switches have recently attracted considerable attention as the next generation of high speed interconnects. They are a special type of crossbar switches with an exclusive buffer at each crosspoint of the crossbar. They demonstrate unique advantages over traditional unbuffered crossbar switches, such as high throughput, low latency, and asynchronous packet scheduling. However, since crosspoint buffers are expensive on-chip memories, it is desired that each crosspoint has only a small buffer. This dissertation proposes a series of practical algorithms and techniques for efficient packet scheduling for buffered crossbar switches. To reduce the hardware cost of such switches and make them scalable, we considered partially buffered crossbars, whose crosspoint buffers can be of an arbitrarily small size. Firstly, we introduced a hybrid scheme called Packet-mode Asynchronous Scheduling Algorithm (PASA) to schedule best effort traffic. PASA combines the features of both distributed and centralized scheduling algorithms and can directly handle variable length packets without Segmentation And Reassembly (SAR). We showed by theoretical analysis that it achieves 100% throughput for any admissible traffic in a crossbar with a speedup of two. Moreover, outputs in PASA have a large probability to avoid the more time-consuming centralized scheduling process, and thus make fast scheduling decisions. Secondly, we proposed the Fair Asynchronous Segment Scheduling (FASS) algorithm to handle guaranteed performance traffic with explicit flow rates. FASS reduces the crosspoint buffer size by dividing packets into shorter segments before transmission. It also provides tight constant performance guarantees by emulating the ideal Generalized Processor Sharing (GPS) model. Furthermore, FASS requires no speedup for the crossbar, lowering the hardware cost and improving the switch capacity. Thirdly, we presented a bandwidth allocation scheme called Queue Length Proportional (QLP) to apply FASS to best effort traffic. QLP dynamically obtains a feasible bandwidth allocation matrix based on the queue length information, and thus assists the crossbar switch to be more work-conserving. The feasibility and stability of QLP were proved, no matter whether the traffic distribution is uniform or non-uniform. Hence, based on bandwidth allocation of QLP, FASS can also achieve 100% throughput for best effort traffic in a crossbar without speedup.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long-span bridges are flexible and therefore are sensitive to wind induced effects. One way to improve the stability of long span bridges against flutter is to use cross-sections that involve twin side-by-side decks. However, this can amplify responses due to vortex induced oscillations. Wind tunnel testing is a well-established practice to evaluate the stability of bridges against wind loads. In order to study the response of the prototype in laboratory, dynamic similarity requirements should be satisfied. One of the parameters that is normally violated in wind tunnel testing is Reynolds number. In this dissertation, the effects of Reynolds number on the aerodynamics of a double deck bridge were evaluated by measuring fluctuating forces on a motionless sectional model of a bridge at different wind speeds representing different Reynolds regimes. Also, the efficacy of vortex mitigation devices was evaluated at different Reynolds number regimes. One other parameter that is frequently ignored in wind tunnel studies is the correct simulation of turbulence characteristics. Due to the difficulties in simulating flow with large turbulence length scale on a sectional model, wind tunnel tests are often performed in smooth flow as a conservative approach. The validity of simplifying assumptions in calculation of buffeting loads, as the direct impact of turbulence, needs to be verified for twin deck bridges. The effects of turbulence characteristics were investigated by testing sectional models of a twin deck bridge under two different turbulent flow conditions. Not only the flow properties play an important role on the aerodynamic response of the bridge, but also the geometry of the cross section shape is expected to have significant effects. In this dissertation, the effects of deck details, such as width of the gap between the twin decks, and traffic barriers on the aerodynamic characteristics of a twin deck bridge were investigated, particularly on the vortex shedding forces with the aim of clarifying how these shape details can alter the wind induced responses. Finally, a summary of the issues that are involved in designing a dynamic test rig for high Reynolds number tests is given, using the studied cross section as an example.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methane hydrate is an ice-like substance that is stable at high-pressure and low temperature in continental margin sediments. Since the discovery of a large number of gas flares at the landward termination of the gas hydrate stability zone off Svalbard, there has been concern that warming bottom waters have started to dissociate large amounts of gas hydrate and that the resulting methane release may possibly accelerate global warming. Here, we can corroborate that hydrates play a role in the observed seepage of gas, but we present evidence that seepage off Svalbard has been ongoing for at least three thousand years and that seasonal fluctuations of 1-2°C in the bottom-water temperature cause periodic gas hydrate formation and dissociation, which focus seepage at the observed sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monitoring and tracking of IP traffic flows are essential for network services (i.e. packet forwarding). Packet header lookup is the main part of flow identification by determining the predefined matching action for each incoming flow. In this paper, an improved header lookup and flow rule update solution is investigated. A detailed study of several well-known lookup algorithms reveals that searching individual packet header field and combining the results achieve high lookup speed and flexibility. The proposed hybrid lookup architecture is comprised of various lookup algorithms, which are selected based on the user applications and system requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les organismes aquatiques sont adaptés à une grande variabilité hydrique et thermique des rivières. Malgré ceci, la régulation des eaux suscite des changements aux débits qui peuvent provoquer des impacts négatifs sur la biodiversité et les processus écologiques en rivière. Celle-ci peut aussi causer des modifications au niveau des régimes thermiques et des caractéristiques de l’habitat du poisson. Des données environnementales et biologiques décrivant l’habitat du poisson existent, mais elles sont incomplètes pour plusieurs rivières au Canada et de faible qualité, limitant les relations quantitatives débit-température-poissons à un petit nombre de rivières ou à une région étudiée. La recherche menée dans le cadre de mon doctorat concerne les impacts de la génération d'hydroélectricité sur les rivières; soit les changements aux régimes hydriques et thermiques reliés à la régulation des eaux sur la variation des communautés ichtyologiques qui habitent les rivières régulées et naturelles au Canada. Suite à une comparaison d’échantillonnage de pêche, une méthode constante pour obtenir des bons estimés de poisson (richesse, densité et biomasse des espèces) a été établie pour évaluer la structure de la communauté de poissons pour l’ensemble des rivières ciblées par l’étude. Afin de mieux comprendre ces changements environnementaux, les principales composantes décrivant ces régimes ont été identifiées et l’altération des régimes hydriques pour certaines rivières régulées a été quantifiée. Ces résultats ont servi à établir la relation significative entre le degré de changement biotique et le degré de changement hydrique pour illustrer les différences entre les régimes de régulation. Pour faire un complément aux indices biotiques déjà calculés pour l’ensemble des communautés de poissons (diversité, densité et biomasse des espèces par rivière), les différences au niveau des guildes de poissons ont été quantifiées pour expliquer les divers effets écologiques dus aux changements de régimes hydriques et thermiques provenant de la gestion des barrages. Ces derniers résultats servent à prédire pour quels traits écologiques ou groupes d’espèces de poissons les composantes hydriques et thermiques sont importantes. De plus, ces derniers résultats ont servi à mettre en valeur les variables décrivant les régimes thermiques qui ne sont pas toujours inclues dans les études hydro-écologiques. L’ensemble des résultats de cette thèse ont des retombées importantes sur la gestion des rivières en évaluant, de façon cohérente, l’impact de la régulation des rivières sur les communautés de poissons et en développant des outils de prévision pour la restauration des écosystèmes riverains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A micro gas sensor has been developed by our group for the detection of organo-phosphate vapors using an aqueous oxime solution. The analyte diffuses from the high flow rate gas stream through a porous membrane to the low flow rate aqueous phase. It reacts with the oxime PBO (1-Phenyl-1,2,3,-butanetrione 2-oxime) to produce cyanide ions, which are then detected electrochemically from the change in solution potential. Previous work on this oxime based electrochemistry indicated that the optimal buffer pH for the aqueous solution was approximately 10. A basic environment is needed for the oxime anion to form and the detection reaction to take place. At this specific pH, the potential response of the sensor to an analyte (such as acetic anhydride) is maximized. However, sensor response slowly decreases as the aqueous oxime solution ages, by as much as 80% in first 24 hours. The decrease in sensor response is due to cyanide which is produced during the oxime degradation process, as evidenced by the cyanide selective electrode. Solid phase micro-extraction carried out on the oxime solution found several other possible degradation products, including acetic acid, N-hydroxy benzamide, benzoic acid, benzoyl cyanide, 1-Phenyl 1,3-butadione, 2-isonitrosoacetophenone and an imine derived from the oxime. It was concluded that degradation occurred through nucleophilic attack by a hydroxide or oxime anion to produce cyanide, as well as a nitrogen atom rearrangement similar to Beckmann rearrangement. The stability of the oxime in organic solvents is most likely due to the lack of water, and specifically hydroxide ions. The reaction between oxime and organo-phosphate to produce cyanide ions requires hydroxide ions, and therefore pure organic solvents are not compatible with the current micro-sensor electrochemistry. By combining a concentrated organic oxime solution with the basic aqueous buffer just prior to being used in the detection process, oxime degradation can be avoided while preserving the original electrochemical detection scheme. Based on beaker cell experiments with selective cyanide sensitive electrodes, ethanol was chosen as the best organic solvent due to its stabilizing effect on the oxime, minimal interference with the aqueous electrochemistry, and compatibility with the current microsensor material (PMMA). Further studies showed that ethanol had a small effect on micro-sensor performance by reducing the rate of cyanide production and decreasing the overall response time. To avoid incomplete mixing of the aqueous and organic solutions, they were pre-mixed externally at a 10:1 ratio, respectively. To adapt the microsensor design to allow for mixing to take place within the device, a small serpentine channel component was fabricated with the same dimensions and material as the original sensor. This allowed for seamless integration of the microsensor with the serpentine mixing channel. Mixing in the serpentine microchannel takes place via diffusion. Both detector potential response and diffusional mixing improve with increased liquid residence time, and thus decreased liquid flowrate. Micromixer performance was studies at a 10:1 aqueous buffer to organic solution flow rate ratio, for a total rate of 5.5 μL/min. It was found that the sensor response utilizing the integrated micromixer was nearly identical to the response when the solutions were premixed and fed at the same rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many existing encrypted Internet protocols leak information through packet sizes and timing. Though seemingly innocuous, prior work has shown that such leakage can be used to recover part or all of the plaintext being encrypted. The prevalence of encrypted protocols as the underpinning of such critical services as e-commerce, remote login, and anonymity networks and the increasing feasibility of attacks on these services represent a considerable risk to communications security. Existing mechanisms for preventing traffic analysis focus on re-routing and padding. These prevention techniques have considerable resource and overhead requirements. Furthermore, padding is easily detectable and, in some cases, can introduce its own vulnerabilities. To address these shortcomings, we propose embedding real traffic in synthetically generated encrypted cover traffic. Novel to our approach is our use of realistic network protocol behavior models to generate cover traffic. The observable traffic we generate also has the benefit of being indistinguishable from other real encrypted traffic further thwarting an adversary's ability to target attacks. In this dissertation, we introduce the design of a proxy system called TrafficMimic that implements realistic cover traffic tunneling and can be used alone or integrated with the Tor anonymity system. We describe the cover traffic generation process including the subtleties of implementing a secure traffic generator. We show that TrafficMimic cover traffic can fool a complex protocol classification attack with 91% of the accuracy of real traffic. TrafficMimic cover traffic is also not detected by a binary classification attack specifically designed to detect TrafficMimic. We evaluate the performance of tunneling with independent cover traffic models and find that they are comparable, and, in some cases, more efficient than generic constant-rate defenses. We then use simulation and analytic modeling to understand the performance of cover traffic tunneling more deeply. We find that we can take measurements from real or simulated traffic with no tunneling and use them to estimate parameters for an accurate analytic model of the performance impact of cover traffic tunneling. Once validated, we use this model to better understand how delay, bandwidth, tunnel slowdown, and stability affect cover traffic tunneling. Finally, we take the insights from our simulation study and develop several biasing techniques that we can use to match the cover traffic to the real traffic while simultaneously bounding external information leakage. We study these bias methods using simulation and evaluate their security using a Bayesian inference attack. We find that we can safely improve performance with biasing while preventing both traffic analysis and defense detection attacks. We then apply these biasing methods to the real TrafficMimic implementation and evaluate it on the Internet. We find that biasing can provide 3-5x improvement in bandwidth for bulk transfers and 2.5-9.5x speedup for Web browsing over tunneling without biasing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"These studies were conducted by the General Electric Company, Reentry Systems Department, for the Stability and Control Section of the Flight Dynamics Laboratory of the Air Force Research and Technology Division."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les organismes aquatiques sont adaptés à une grande variabilité hydrique et thermique des rivières. Malgré ceci, la régulation des eaux suscite des changements aux débits qui peuvent provoquer des impacts négatifs sur la biodiversité et les processus écologiques en rivière. Celle-ci peut aussi causer des modifications au niveau des régimes thermiques et des caractéristiques de l’habitat du poisson. Des données environnementales et biologiques décrivant l’habitat du poisson existent, mais elles sont incomplètes pour plusieurs rivières au Canada et de faible qualité, limitant les relations quantitatives débit-température-poissons à un petit nombre de rivières ou à une région étudiée. La recherche menée dans le cadre de mon doctorat concerne les impacts de la génération d'hydroélectricité sur les rivières; soit les changements aux régimes hydriques et thermiques reliés à la régulation des eaux sur la variation des communautés ichtyologiques qui habitent les rivières régulées et naturelles au Canada. Suite à une comparaison d’échantillonnage de pêche, une méthode constante pour obtenir des bons estimés de poisson (richesse, densité et biomasse des espèces) a été établie pour évaluer la structure de la communauté de poissons pour l’ensemble des rivières ciblées par l’étude. Afin de mieux comprendre ces changements environnementaux, les principales composantes décrivant ces régimes ont été identifiées et l’altération des régimes hydriques pour certaines rivières régulées a été quantifiée. Ces résultats ont servi à établir la relation significative entre le degré de changement biotique et le degré de changement hydrique pour illustrer les différences entre les régimes de régulation. Pour faire un complément aux indices biotiques déjà calculés pour l’ensemble des communautés de poissons (diversité, densité et biomasse des espèces par rivière), les différences au niveau des guildes de poissons ont été quantifiées pour expliquer les divers effets écologiques dus aux changements de régimes hydriques et thermiques provenant de la gestion des barrages. Ces derniers résultats servent à prédire pour quels traits écologiques ou groupes d’espèces de poissons les composantes hydriques et thermiques sont importantes. De plus, ces derniers résultats ont servi à mettre en valeur les variables décrivant les régimes thermiques qui ne sont pas toujours inclues dans les études hydro-écologiques. L’ensemble des résultats de cette thèse ont des retombées importantes sur la gestion des rivières en évaluant, de façon cohérente, l’impact de la régulation des rivières sur les communautés de poissons et en développant des outils de prévision pour la restauration des écosystèmes riverains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the growth of a tissue construct in a perfusion bioreactor, focussing on its response to the mechanical environment. The bioreactor system is modelled as a two-dimensional channel containing a tissue construct through which a flow of culture medium is driven. We employ a multiphase formulation of the type presented by G. Lemon, J. King, H. Byrne, O. Jensen and K. Shakesheff in their study (Multiphase modelling of tissue growth using the theory of mixtures. J. Math. Biol. 52(2), 2006, 571–594) restricted to two interacting fluid phases, representing a cell population (and attendant extracellular matrix) and a culture medium, and employ the simplifying limit of large interphase viscous drag after S. Franks in her study (Mathematical Modelling of Tumour Growth and Stability. Ph.D. Thesis, University of Nottingham, UK, 2002) and S. Franks and J. King in their study Interactions between a uniformly proliferating tumour and its surrounding: Uniform material properties. Math. Med. Biol. 20, 2003, 47–89). The novel aspects of this study are: (i) the investigation of the effect of an imposed flow on the growth of the tissue construct, and (ii) the inclusion of a chanotransduction mechanism regulating the response of the cells to the local mechanical environment. Specifically, we consider the response of the cells to their local density and the culture medium pressure. As such, this study forms the first step towards a general multiphase formulation that incorporates the effect of mechanotransduction on the growth and morphology of a tissue construct. The model is analysed using analytic and numerical techniques, the results of which illustrate the potential use of the model to predict the dominant regulatory stimuli in a cell population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we perform an asymptotic analysis of a coupled system of two Advection-Diffusion-Reaction equations with Danckwerts boundary conditions, which models the interaction between a microbial population (e.g., bacterias), called biomass, and a diluted organic contaminant (e.g., nitrates), called substrate, in a continuous flow bioreactor. This system exhibits, under suitable conditions, two stable equilibrium states: one steady state in which the biomass becomes extinct and no reaction is produced, called washout, and another steady state, which corresponds to the partial elimination of the substrate. We use the method of linearization to give sufficient conditions for the asymptotic stability of the two stable equilibrium configurations. Finally, we compare our asymptotic analysis with the usual asymptotic analysis associated to the continuous bioreactor when it is modeled with ordinary differential equations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider laminar high-Reynolds-number flow through a finite-length planar channel, where a portion of one wall is replaced by a thin massless elastic membrane that is held under longitudinal tension T and subject to an external pressure distribution. The flow is driven by a fixed pressure drop along the full length of the channel. We investigate the global stability of two-dimensional Poiseuille flow using a method of matched local eigenfunction expansions, which is compared to direct numerical simulations. We trace the neutral stability curve of the primary oscillatory instability of the system, illustrating a transition from high-frequency ‘sloshing’ oscillations at high T to vigorous ‘slamming’ motion at low T . Small-amplitude sloshing at high T can be captured using a low-order eigenmode truncation involving four surface-based modes in the compliant segment of the channel coupled to Womersley flow in the rigid segments. At lower tensions, we show that hydrodynamic modes contribute increasingly to the global instability and we demonstrate a change in the mechanism of energy transfer from the mean flow, with viscous effects being destabilising. Simulations of finite-amplitude oscillations at low T reveal a generic slamming motion, in which the the flexible membrane is drawn close to the opposite rigid wall before rapidly recovering. A simple model is used to demonstrate how fluid inertia in the downstream rigid channel segment, coupled to membrane curvature downstream of the moving constriction, together control slamming dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To formulate the water in oil (W/O) emulsion of corn silk (CS) extract and to evaluate its stability at various storage conditions. Methods: Ethanol CS extract was prepared using maceration (cold) technique. A 4 % CS emulsion was prepared using varying concentrations of liquid paraffin, ABIL EM90 and water. The formulations were kept at 40 oC for 28 days and to screen out the less stable formulations. The remaining formulations were further stressed at 50 oC to choose the most stable formulation. The optimized formulation was evaluated for physical characteristics including phase separation, rheology and mean droplet size. The physical stability of the formulation was evaluated by monitoring these parameters over a period of 12 weeks at 8, 25, 40 and 40 oC, and 75 % RH. Results: The chosen formulation showed good resistance to phase separation on centrifugation under all storage conditions. Rheological behavior followed non-Newtonian pseudoplastic pattern at various storage conditions. Mean droplet size of freshly prepared formulation was 2.98 ± 1.32 µm and did not show significant (p < 0.05) changes at normal storage conditions (8 and 25 oC). Conclusion: The findings indicate that the developed CS extract W/O emulsion is stable and therefore may be suitable for topical use on skin as an antioxidant preparation.