950 resultados para polymeric microbeads


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PLT (Pb1-xLaxTiO3, in which x = 0, 0.13 and 0.27) powders were successfully synthesized using the polymeric precursor method, based on the Pechini method. The polymeric precursors were calcined at temperatures ranging from 350 to 500 degrees C for 4 h. X-ray diffraction (XRD) showed the evolution of the crystalline phase starting from the amorphous precursor. Thermogravimetric analyses (TG) and differential thermal analyses (DTA) of the powder precursors showed the influence of the pH on the elimination of organic material. PLT powders have a tendency to form agglomerates, what can be verified by comparing the values of the average particle sizes obtained by Brunauer-Emmett-Teller method, BET (D-BET) with the values of the average crystallite sizes obtained by XRD (D-XRD). (C) 2007 Elsevier Ltd. All fights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of polymerization on the thermal decomposition of polymeric precursors and phase formation was investigated during synthesis of SrTiO3. The precipitation of polymeric precursor in acetone produced a more thermal stable precursor with lower weight loss during decomposition. This more stable precursor retarded the formation of the SrTiO3 phase. From thermal analysis, XRD and FT-IR the presence of an intermediate phase during decomposition of the precursors was observed. This is a mixed (Sr,Ti) carbonate phase with the proposed composition of Sr2Ti2O5.CO3. © 1995.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultra-fine NaNbO3 powder was prepared by the use of polymeric precursors. X-ray diffraction (XRD) results showed that this niobate nucleates from the amorphous precursor, with no intermediate phases, at low temperature (500°C). Studies by XRD and nitrogen adsorption/desorption showed that powders with high crystallinity ( ≈ 100%) and high surface areas (>20 m2/g) are obtained after calcination at 700°C for 5 h. Compacts of calcined powders showed high sinterability reaching 98% of theoretical density when sintered at 1190°C for 3 h.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of polymeric precursors was employed in preparing SrTiO3 thin films by dip coating using Si (111) as substrate. Crack free films were obtained after sintering at temperatures ranging from 550 to 1000°C. The microstructure, characterized by SEM, shows the development of dense polycrystalline films with smooth surface and mean grain size of 52 nm, for films sintered at 1000°C. Grazing incident angle XRD characterization of these films shows that the SrTiO3 phase crystallizes from an inorganic amorphous matrix. No intermediate crystalline phase was identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The particle-growth kinetics of sodium niobate and zirconium titanate powders that were processed by the polymeric precursors method were studied. The growth kinetics that were studied for the particle, in the final stage of crystallization, showed that the growth process occurs in two different stages. For temperatures <800°C, the particle-growth mechanism is associated with surface diffusion, with an activation energy in the range of 40-80 KJ/mol. For temprratures >800°C, particle growth is controlled by densification of the nanometric particle cluster and by a neck-size-controlled particle-growth mechanism. The results suggest that this behavior was typical of the synthesis method, because two different polycation oxides presented the same behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LiNbO3 thin films were prepared from polymeric precursor method by dip coating. The precursor films, deposited on Si(111) substrates, were heat-treated from 400°C to 900°C in order to study the heat treatment influence on the crystallinity and microstructure of the final film. The X-ray diffraction patterns showed, in particular, that these films crystallize at low temperature (450°C) and present no preferential orientation. The scanning electron microscopy studies showed that the film microstructure is strongly influenced by the annealing temperature. © 1997 Trans Tech Publications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lead titanate powders were synthesized through the use of polymeric precursors according to the Pechini Process. The polymeric precursor was calcined at temperatures ranging from 300 to 600°C for 1 or 2 h. X-ray diffraction (XRD) showed that lead titanate crystallizes from the precursor at temperatures as low as 400°C. No intermediate carbonate phase was detected by Fourier transform infrared spectroscopy (FTIR) or by XRD. A powder with mean particle size of 150 nm was obtained after calcination of the precursor at 600°C for 1 h. © 1998 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A polymeric precursor solution was employed in preparing SrBi2Nb2O9 (SBN) powder and thin films dip coated onto Si(100) substrate. XRD results show that the SBN perovskite phase forms at temperatures as low as 600°C through an intermediate fluorite phase. This fluorite phase is observed for samples heat-treated at temperatures of 400 and 500°C. After heat treatment at temperatures ranging from 300 to 800°C, thin films were shown to be crack free. Grazing incident angle XRD characterization shows the occurrence of the fluorite intermediate phase for films also. The thickness of films, measured by MEV, was in the order of 80-100 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymeric precursor solution was used to deposit LiNbO3 thin films by dip coating on sapphire substrates. The effects of processing variables, such as heat treatment conditions and number of deposited layers, on crystallinity and morphology of the final films were investigated. X-ray diffraction patterns show the oriented growth of the films. The rocking curves, obtained around the (006) LiNbO3 peak, revealed that the shape peak and the FWHM value were influenced by the processing variables. According to these parameters, some films presented very homogeneous dense and smooth surfaces, as shown by the SEM and AFM studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of heat-treatment temperature on LiNbO3 thin films prepared by the polymeric precursor method were investigated. The precursor solution was deposited on Si(111) substrates by dip coating. X-ray diffraction and thermal analyses revealed that the crystallization process occurred at a low temperature (420 °C) and led to films with no preferential orientation. High-temperature treatments promoted formation of the LiNb3O8 phase. Scanning electron microscopy, coupled with energy dispersive spectroscopy analyses, showed that the treatment temperature also affected the film microstructure. The surface texture - homogeneous, smooth, and pore-free at low temperature - turned into an `islandlike' microstructure for high-temperature treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ferroelectric barium titanate thin films were produced by the polymeric precursor method. In this technique, the desired metal cations are chelated in a solution using a hydroxycarboxylic acid as the chelating agent. Barium carbonate and titanium IV isopropoxide were used as precursors for the citrate solution. Ethylene glycol and citric acid were used as polymerization/complexation agents for the process. The crystalline structure of the film annealed at 700 °C had a single perovskite phase with a tetragonal structure. The BaTiO3 film showed good P-E hysteresis loops and C-V characteristics due to the switched ferroelectric domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pure BBN powders and with addition of 1 and 2 wt% in excess of bismuth were obtained by Pechini Method. The powders calcined at 300°C/4h were analyzed by TG/DTA to study the temperature of organic matter decomposition. A systematic study of calcination temperature and time to the formation of the BBN phase was performed and the phase formation was accompanied by XRD. The calcined powders at 800°C during 2h were analyzed by infrared spectroscopy and by BET. The powders were isostaticaly pressed and sintered at temperatures ranging from 900°C to 1000°C. The ceramics were characterized by XRD to control the crystalline phase and by SEM to analyze the microstructure.