935 resultados para phosphodiesterase inhibitors
Resumo:
The nuclear Dbf2-related protein kinases 1 and 2 (NDR1/2) are closely-related AGC family kinases that are strongly conserved through evolution. In mammals, they are activated inter alia by phosphorylation of an hydrophobic domain threonine-residue [NDR1(Thr-444)/NDR2(Thr-442)] by an extrinsic protein kinase followed by autophosphorylation of a catalytic domain serine-residue [NDR1(Ser-281)/NDR2(Ser-282)]. We examined NDR1/2 expression and regulation in primary cultures of neonatal rat cardiac myocytes and in perfused adult rat hearts. In myocytes, transcripts for NDR2, but not NDR1, were induced by the hypertrophic agonist, endothelin-1. NDR1(Thr-444) and NDR2(Thr-442) were rapidly phosphorylated (maximal in 15-30 min) in myocytes exposed to some phosphoprotein Ser-/Thr-phosphatase 1/2 inhibitors (calyculin A, okadaic acid) and, to a lesser extent, by hyperosmotic shock, low concentrations of H(2)O(2), or chelerythrine. In myocytes adenovirally-transduced to express FLAG-NDR2 (which exhibited a mainly-cytoplasmic localisation), the same agents increased FLAG-NDR2 activity as assessed by in vitro protein kinase assays, indicative of FLAG-NDR2(Ser-282/Thr-442) phosphorylation. Calyculin A-induced phosphorylation of NDR1(Thr-444)/NDR2(Thr-442) and activation of FLAG-NDR2 were inhibited by staurosporine, but not by other protein kinase inhibitors tested. In ex vivo rat hearts, NDR1(Thr-444)/NDR2(Thr-442) were phosphorylated in response to ischaemia-reperfusion or calyculin A. From a pathological viewpoint, we conclude that activities of NDR1 and NDR2 are responsive to cytotoxic stresses in heart preparations and this may represent a previously-unidentified response to myocardial ischaemia in vivo.
Resumo:
Parkinson's disease is characterized by a progressive and selective loss of dopaminergic neurons in the substantia nigra. Recent investigations have shown that conjugates such as the 5-S-cysteinyl-dopamine, possess strong neurotoxicity and may contribute to the underlying progression of the disease pathology. Although the neuroprotective actions of flavonoids are well reported, that of hydroxycinnamates and other phenolic acids is less established. We show that the hydroxycinnamates caffeic acid and p-coumaric acid, the hydroxyphenethyl alcohol, tyrosol, and a Champagne wine extract rich in these components protect neurons against injury induced by 5-S-cysteinyl-dopamine in vitro. The protection induced by these polyphenols was equal to or greater than that observed for the flavonoids, (+)-catechin, (-)-epicatechin and quercetin. For example, p-coumaric acid evoked significantly more protection at 1muM (64.0+/-3.1%) than both (-)-epicatechin (46.0+/-4.1%, p<0.05) and (+)-catechin (13.1+/-3.0%, p<0.001) at the same concentration. These data indicate that hydroxycinnamates, phenolic acids and phenolic alcohol are also capable of inducing neuroprotective effects to a similar extent to that seen with flavonoids.
Resumo:
Members of the Arenaviridae are a threat to public health and can cause meningitis and hemorrhagic fever, yet treatment options remain limited by a lack of effective antivirals. In this study, we found that peptide-conjugated phosphorodiamidate morpholino oligomers (PPMO) complementary to viral genomic RNA were effective in reducing arenavirus replication in cell cultures and in vivo. PPMO complementary to the Junín virus genome were designed to interfere with viral RNA synthesis, translation, or both. However, only PPMO designed to potentially interfere with translation were effective in reducing virus replication. PPMO complementary to sequence that is highly conserved across arenaviruses and located at the 5’-termini of both genomic segments were effective against Junín, Tacaribe, Pichinde and Lymphocytic Choriomeningitis arenavirus-infected cell cultures, and suppressed viral titers in the livers of LCMV-infected mice. These results suggest that arenavirus 5’-genomic-termini represent promising targets for pan-arenavirus antiviral therapeutic development.
Resumo:
Histone deacetylase inhibitors (HDACIs) interfere with the epigenetic process of histone acetylation and are known to have analgesic properties in models of chronic inflammatory pain. The aim of this study was to determine whether these compounds could also affect neuropathic pain. Different class I HDACIs were delivered intrathecally into rat spinal cord in models of traumatic nerve injury and antiretroviral drug-induced peripheral neuropathy (stavudine, d4T). Mechanical and thermal hypersensitivity was attenuated by 40% to 50% as a result of HDACI treatment, but only if started before any insult. The drugs globally increased histone acetylation in the spinal cord, but appeared to have no measurable effects in relevant dorsal root ganglia in this treatment paradigm, suggesting that any potential mechanism should be sought in the central nervous system. Microarray analysis of dorsal cord RNA revealed the signature of the specific compound used (MS-275) and suggested that its main effect was mediated through HDAC1. Taken together, these data support a role for histone acetylation in the emergence of neuropathic pain.
Resumo:
Epidemiological and clinical trials reveal compelling evidence for the ability of dietary flavonoids to lower cardiovascular disease risk. The mechanisms of action of these polyphenolic compounds are diverse, and of particular interest is their ability to function as protein and lipid kinase inhibitors. We have previously described structure-activity studies that reinforce the possibility for using flavonoid structures as templates for drug design. In the present study, we aim to begin constructing rational screening strategies for exploiting these compounds as templates for the design of clinically relevant, antiplatelet agents. We used the platelet as a model system to dissect the structural influence of flavonoids, stilbenes, anthocyanidins, and phenolic acids on inhibition of cell signaling and function. Functional groups identified as relevant for potent inhibition of platelet function included at least 2 benzene rings, a hydroxylated B ring, a planar C ring, a C ring ketone group, and a C-2 positioned B ring. Hydroxylation of the B ring with either a catechol group or a single C-4' hydroxyl may be required for efficient inhibition of collagen-stimulated tyrosine phosphorylated proteins of 125 to 130 kDa, but may not be necessary for that of phosphotyrosine proteins at approximately 29 kDa. The removal of the C ring C-3 hydroxyl together with a hydroxylated B ring (apigenin) may confer selectivity for 37 to 38 kDa phosphotyrosine proteins. We conclude that this study may form the basis for construction of maps of flavonoid inhibitory activity on kinase targets that may allow a multitargeted therapeutic approach with analogue counterparts and parent compounds.
Resumo:
A series of 3-oxo-C12-HSL, tetramic acid and tetronic acid analogues was synthesized to gain insights into the structural requirements for quorum sensing inhibition in Staphylococcus aureus. Compounds active against agr were non-competitive inhibitors of the auto-inducing peptide (AIP)-activated AgrC receptor, by altering the activation efficacy of the cognate AIP-1. They appeared to act as negative allosteric modulators and are exemplified by 3-tetradecanoyltetronic acid 17 which reduced nasal cell colonization and arthritis in a murine infection model.
Resumo:
In this study we investigated the effects of Caesalpinia decapetala (CD) extracts on lipid oxidation in ground beef patties. Plant extracts and butylated hydroxytoluene (BHT) were individually added to patties at both 0.1% and 0.5% (w/w) concentrations. We assessed the antioxidant efficacy of CD by the ferric reducing antioxidant power (FRAP) assay and evaluated their potential as natural antioxidants for meat preservation by thiobarbituric acid reactive substance (TBARS) values, hexanal content, fatty acid composition and color parameters. These were tested periodically during 11 days of refrigerated storage. TBARS levels were significantly lower (p ≤ 0.05) in the samples containing plant extracts or BHT than in the non-treated control. In addition, the beef patties formulated with the selected plant extracts showed significantly (p ≤ 0.05) better color stability than those without antioxidants. These results indicate that edible plant extracts are promising sources of natural antioxidants and can potentially be used as functional preservatives in meat products.
Resumo:
The present study concentrates on the evaluation of the anti-glycation effect of some bioactive substances present in yerba mate (Ilex paraguariensis): 5-caffeoylquinic acid, caffeic acid and a sapogenin (oleanolic acid). Bovine serum albumin and histones were incubated in the presence of methylglyoxal with or without the addition of 5-caffeoylquinic acid, caffeic acid and oleanolic acid. After the incubation period, advanced glycation end product (AGE) fluorescence spectra were performed and protein structural changes were evaluated by Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis. Chlorogenic acid, caffeic acid are the main substances responsible for the anti-glycation effect of mate tea. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Prostaglandins are known to be produced by macrophages when challenged with Trypanosoma cruzi, the etiological agent of Chagas` disease. It is not known whether these lipid mediators play a role in oxidative stress in host defenses against this important protozoan parasite. In this study, we demonstrated that inducible cyclooxygenase-mediated prostaglandin production is a key chemical mediator in the control of parasite burden and erythrocyte oxidative stress during T. cruzi infection in C57BL/6 and BALB/c mice, prototype hosts for the study of resistance and susceptibility in murine Chagas` disease. The results suggested the existence of at least two mechanisms of oxidative stress, dependent or independent with regard to the nitric oxide and cyclooxygenase pathway, where one or the other is more evident depending on the mouse strain.
Resumo:
Apocynin has been extensively used as an inhibitor of NADPH oxidase (NOX) in many experimental models using phagocytic and non-phagocytic cells. Currently, there is some controversy about the efficacy of apocynin in non-phagocytic cells, but in phagocytes the reported results are consistent, which could be due to the presence of myeloperoxidase in these cells. This enzyme has been proposed as responsible for activating apocynin by generating its dimer, diapocynin, which is supposed to be the active compound that prevents NADPH oxidase complex assembly and activation. Here, we synthesized diapocynin and studied its effect on inhibition of gp91(phox) RNA expression. We found that diapocynin strongly inhibited the expression of gp91(phox)mRNA in peripheral blood mononuclear cells (PBMC). Only at a higher concentration, apocynin was able to exert the same effect. We also compared the apocynin and diapocynin efficacy as inhibitors of tumor necrosis factor-alpha (TNF-alpha) and interleukin-10 (IL-10) production in response to lipopolysaccharide (LPS)-activated PBMC. Although apocynin did inhibit TNF-alpha production, diapocynin had a much more pronounced effect, on both TNF-alpha and IL-10 production. In conclusion, these findings suggest that the bioconversion of apocynin to diapocynin is an important issue not limited to enzymatic activity inhibition, but also for other biological effects as gp91(phox) mRNA expression and cytokine production. Hence, as diapocynin can be easily prepared from apocynin, a one-step synthesis, we recommend its use in studies where the biological effects of apocynin are searched. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Recent evidence suggests that angiotensin II (Ang II) upregulates phosphodiesterase (PDE) 1A expression. We hypothesized that Ang II augmented PDE1 activation, decreasing the bioavailability of cyclic guanosine 3` 5`-monophosphate (cGMP), and contributing to increased vascular contractility. Male Sprague-Dawley rats received mini-osmotic pumps with Ang II (60 ng.min(-1)) or saline for 14 days. Phenylephrine (PE)-induced contractions were increased in aorta (E(max)168%+/- 8% vs 136%+/- 4%) and small mesenteric arteries (SMA; E(max)170%+/- 6% vs 143%+/- 3%) from Ang II-infused rats compared to control. PDE1 inhibition with vinpocetine (10 mu mol/L) reduced PE-induced contraction in aortas from Ang II rats (E(max)94%+/- 12%) but not in controls (154%+/- 7%). Vinpocetine decreased the sensitivity to PE in SMA from Ang II rats compared to vehicle (-log of half maximal effective concentration 5.1 +/- 0.1 vs 5.9 +/- 0.06), but not in controls (6.0 +/- 0.03 vs 6.1 +/- 0.04). Sildenafil (10 mu mol/L), a PDE5 inhibitor, reduced PE-induced maximal contraction similarly in Ang II and control rats. Arteries were contracted with PE (1 mu mol/L), and concentration-dependent relaxation to vinpocetine and sildenafil was evaluated. Aortas from Ang II rats displayed increased relaxation to vinpocetine compared to control (E(max)82%+/- 12% vs 445 +/- 5%). SMA from Ang II rats showed greater sensitivity during vinpocetine-induced relaxation compared to control (-log of half maximal effective concentration 6.1 +/- 0.3 vs 5.3 +/- 0.1). No differences in sildenafil-induced relaxation were observed. PDE1A and PDE1C expressions in aorta and PDE1A expression in SMA were increased in Ang II rats. cGMP production, which is decreased in arteries from Ang II rats, was restored after PDE1 blockade. We conclude that PDE1 activation reduces cGMP bioavailability in arteries from Ang II, contributing to increased contractile responsiveness. (Hypertension. 2011;57[part 2]:655-663.)
Resumo:
P>Scedosporium apiospermum is an emerging agent of opportunistic mycoses in humans. Previously, we showed that mycelia of S. apiospermum secreted metallopeptidases which were directly linked to the destruction of key host proteins. In this study, we analysed the effect of metallopeptidase inhibitors on S. apiospermum development. As germination of inhaled conidia is a crucial event in the infectious process of S. apiospermum, we studied the morphological transformation induced by the incubation of conidia in Sabouraud-dextrose medium at 37 degrees C. After 6 h, some conidia presented a small projection resembling a germ-tube. A significant increase, around sixfold, in the germ-tube length was found after 12 h, and hyphae were exclusively observed after 24 h. Three distinct metallopeptidase inhibitors were able to arrest the transformation of conidia into hyphae in different ways; for instance, 1,10-phenanthroline (PHEN) completely blocked this process at 10 mu mol l-1, while ethylenediamine tetraacetic acid (EDTA) and ethylene glycol-bis (beta-aminoethyl ether; EGTA) only partially inhibited the differentiation at up to 10 mmol l-1. EGTA did not promote any significant reduction in the conidial growth, while PHEN and EDTA, both at 10 mmol l-1, inhibited the proliferation around 100% and 65%, respectively. The secretion of polypeptides into the extracellular environment and the metallopeptidase activity secreted by mycelia were completely inhibited by PHEN. These findings suggest that metallo-type enzymes could be potential targets for future therapeutic interventions against S. apiospermum.