921 resultados para mixing
Resumo:
The pseudoscalar mesons η(547), η′(958) and η″(1410) are studied in the gluonium-quarkonium mixing framework. The SU(3)-flavor symmetry breaking and annihilation effects are considered. Estimates of the glueball mass and of the ms/mu ratio are provided. The system η(1295) and η(1490) is also considered in a mixing scheme.
Resumo:
We explore the features of neutrino oscillation which are relevant for measurements of the leptonic CP violating phase δ and the sign of Delta;m13 2 in experiments with low-energy conventional superbeams. Toward the goal, we introduce a new powerful tool called the CP trajectory diagram in bi-probability space which allows us to represent pictorially the three effects, the effects of (a) genuine CP violation due to the sin δ term, (6) CP conserving cos δ term, and (c) fake CP violation due to earth matter, separately in a single diagram. By using the diagram, we observe that there is a two-fold ambiguity in the determination of S which is related with the sign of Delta;m13 2. Possible ways of resolving the ambiguity are discussed. In particular, we point out that an in situ simultaneous measurement of δ and the sign of Delta;m13 2 can be carried out at distances of about 700 km, or at the Phase II of the JHF experiment provided that sin δ ·Delta;m13 2 < 0, both with a megaton class water Cherenkov detector.
Resumo:
We use a time-dependent dynamical mean-field-hydrodynamic model to study mixing-demixing in a degenerate fermion-fermion mixture (DFFM). It is demonstrated that with the increase of interspecies repulsion and/or trapping frequencies, a mixed state of a DFFM could turn into a fully demixed state in both three-dimensional spherically symmetric as well as quasi-one-dimensional configurations. Such a demixed state of a DFFM could be experimentally realized by varying an external magnetic field near a fermion-fermion Feshbach resonance, which will result in an increase of interspecies fermion-fermion repulsion, and/or by increasing the external trap frequencies. © 2006 The American Physical Society.
Resumo:
We study an ultracold and dilute superfluid Bose-Fermi mixture confined in a strictly one-dimensional (1D) atomic waveguide by using a set of coupled nonlinear mean-field equations obtained from the Lieb-Liniger energy density for bosons and the Gaudin-Yang energy density for fermions. We consider a finite Bose-Fermi interatomic strength gbf and both periodic and open boundary conditions. We find that with periodic boundary conditions-i.e., in a quasi-1D ring-a uniform Bose-Fermi mixture is stable only with a large fermionic density. We predict that at small fermionic densities the ground state of the system displays demixing if gbf >0 and may become a localized Bose-Fermi bright soliton for gbf <0. Finally, we show, using variational and numerical solutions of the mean-field equations, that with open boundary conditions-i.e., in a quasi-1D cylinder-the Bose-Fermi bright soliton is the unique ground state of the system with a finite number of particles, which could exhibit a partial mixing-demixing transition. In this case the bright solitons are demonstrated to be dynamically stable. The experimental realization of these Bose-Fermi bright solitons seems possible with present setups. © 2007 The American Physical Society.
Resumo:
Rheology has the purpose to study the flux and deformation of materials when submitted to some tension or outer mechanical solicitation. In practice, the effective scientific field broached by rheology is restricted only to the study of homogeneous fluids behavior, in which are included eminent liquids, particles suspensions, and emulsions. The viscosity (η) and the yield stress (τ 0) are the two basic values that define the fluids' behavior. The first one is the proportionality constant that relates the shear rate (γ) with the shear stress (τ) applied, while the second indicates the minimal tension for the flowage beginning. The fluids that obey the Newton's relation - Newtonians fluids - display the constant viscosity and the null yield stress. It's the case of diluted suspensions and grate amount of the pure liquids (water, acetone, alcohol, etc.) in which the viscosity is an intrinsic characteristic that depends on temperature and, in a less significant way, pressure. The suspension, titled Cement Paste, is defined as being a mixture of water and cement with, or without, a superplasticizer additive. The cement paste has a non-Newtonian fluid behavior (pseudoplastic), showing a viscosity that varies in accord to the applied shear stress and significant deformations are obtained from a delimited yield stress. In some cases, systems can also manifest the influence of chemical additives used to modify the interactions fluid/particles, besides the introduced modifications by the presence of incorporated air. To the cement paste the rheometric rehearsals were made using the rheometer R/S Brookfield that controls shear stress and shear rate in accord to the rheological model of Herschel-Bulkley that seems to better adapt to this kind of suspension's behavior. This paper shows the results of rheometrical rehearsals on the cement paste that were produced with cements HOLCIM MC-20 RS and CPV-ARI RS with the addition of superplasticizer additives based of napthaline and polycarboxilate, with and without a constant agitation of the mixture. The obtainment of dosages of superplasticizer additives, as well as the water/cement ratio, at the cement at the fluidify rate determination, was done in a total of 12 different mixtures. It's observed that the rheological parameters seem to vary according to the cement type, the superplasticizer type, and the methodology applied at the fluidity rate determination.
Resumo:
We define by simple conditions two wide subclasses of the socalled Arnoux-Rauzy systems; the elements of the first one share the property of (measure-theoretic) weak mixing, thus we generalize and improve a counterexample to the conjecture that these systems are codings of rotations; those of the second one have eigenvalues, which was known hitherto only for a very small set of examples.
Resumo:
We present a measurement of the semileptonic mixing asymmetry for B0 mesons, asld, using two independent decay channels: B0→μ +D -X, with D -→K +π -π -; and B0→μ +D *-X, with D * -→D ̄0π -, D ̄0→ K +π - (and charge conjugate processes). We use a data sample corresponding to 10.4fb -1 of pp̄ collisions at √s=1.96TeV, collected with the D0 experiment at the Fermilab Tevatron collider. We extract the charge asymmetries in these two channels as a function of the visible proper decay length of the B0 meson, correct for detector-related asymmetries using data-driven methods, and account for dilution from charge-symmetric processes using Monte Carlo simulation. The final measurement combines four signal visible proper decay length regions for each channel, yielding asld=[0.68±0.45(stat)±0.14(syst)]%. This is the single most precise measurement of this parameter, with uncertainties smaller than the current world average of B factory measurements. © 2012 American Physical Society.
Resumo:
The consequences of diversity on belowground processes are still poorly known in tropical forests. The distributions of very fine roots (diameter <1 mm) and fine roots (diameter <3 mm) were studied in a randomized block design close to the harvest age of fast-growing plantations. A replacement series was set up in Brazil with mono-specific Eucalyptus grandis (100E) and Acacia mangium (100A) stands and a mixture with the same stocking density and 50 % of each species (50A:50E). The total fine root (FR) biomass down to a depth of 2 m was about 27 % higher in 50A:50E than in 100A and 100E. Fine root over-yielding in 50A:50E resulted from a 72 % rise in E. grandis fine root biomass per tree relative to 100E, whereas A. mangium FR biomass per tree was 17 % lower than in 100A. Mixing A. mangium with E. grandis trees led to a drop in A. mangium FR biomass in the upper 50 cm of soil relative to 100A, partially balanced by a rise in deep soil layers. Our results highlight similarities in the effects of directional resources on leaf and FR distributions in the mixture, with A. mangium leaves below the E. grandis canopy and a low density of A. mangium fine roots in the resource-rich soil layers relative to monospecific stands. The vertical segregation of resource-absorbing organs did not lead to niche complementarity expected to increase the total biomass production. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
A new double channel field-effect structure based on delta-doping technology is proposed Resonant tunneling between the channels is employed to control the transport along the interface plane. A realistic simulation is performed for several temperatures. We solve the Schrodinger and Poisson equations self-consistently and have found that a large peak-to-valley ratio in the current-voltage characteristic occurs at the whole range of temperature investigated this effect indicates the potential application of this phenomenon for switching devices, where the transversal conductivity can be controlled due to the coupling between states belonging to different channels.
Resumo:
We point out that the usual experimental upper bounds on the ''tau-neutrino mass'' do not apply if neutrino mixing is considered. The suppression of the population of the tau decay spectrum near the end point, caused by mixing, may be compensated by an enhancement because of a resonant mechanism of hadronization. It is necessary therefore to analyze the whole spectrum to infer some limit to the '' tau-neutrino mass.'' We argue that, consequently, neutrino mixing evades the objection to interpret the KARMEN anomaly as a heavy sequential neutrino.
Resumo:
We calculate within the framework of relativistic nuclear models the contribution of the ρ0 - ω mixing interaction to the binding energy differences of the mirror nuclei in the neighborhood of A = 16 and A = 40. We use two relativistic models for the nuclear structure, one with scalar and vector Woods-Saxon potentials, and the Walecka model. The ρ0 - ω interaction is treated in first order perturbation theory. When using the Walecka model the ρ- and ω-nucleon coupling constants are the same for calculating bound state wave functions and the perturbation due to the mixing. We find that the relativistic results on the average are of the same order as the ones obtained with nonrelativistic calculations.
Resumo:
Using a recent shape-independent approximation for the 3S1-3D1 mixing parameter, theoretical prevision for the low-energy mixing parameters is made. The present prevision is consistent with the deuteron binding energy, its asymptotic D-state to S-state ratio, ηd, the triplet-scattering length, and the meson exchange tail of the tensor nucleon-nucleon potential. The theoretical prevision up to an incident laboratory energy of 25 MeV is consistent with the recent multi-energy determination of mixing parameters, but is much higher than many single-energy determinations of the same. The low single-energy values of the mixing parameter could be reproduced by meson-theoretical potentials only with a substantially reduced ηd. © 1994 The American Physical Society.
Resumo:
A low-energy shape-independent expansion is suggested for the function tan(2εBB)/(2k2), where εBB is the Blatt-Biedenharn mixing parameter for the 3S1 - 3D1 channel. This expansion allows an evaluation of the mixing parameter εBB from a knowledge of the deuteron asymptotic D to S ratio, pion mass and other low-energy observables, such as the scattering lengths, deuteron binding etc., of the nucleon-nucleon system. We demonstrate that the correct long range behavior of the tensor potential is essential for a realistic reproduction of εBB.
Resumo:
The momentum dependence of the ρ0-ω mixing contribution to charge-symmetry breaking (CSB) in the nucleon-nucleon interaction is compared in a variety of models. We focus in particular on the role that the structure of the quark propagator plays in the predicted behaviour of the ρ0-ω mixing amplitude. We present new results for a confining (entire) quark propagator and for typical propagators arising from explicit numerical solutions of quark Dyson-Schwinger equations We compare these to hadronic and free quark calculations The implications for our current understanding of CSB experiments is discussed.
Resumo:
Mach number and thermal effects on the mechanisms of sound generation and propagation are investigated in spatially evolving two-dimensional isothermal and non-isothermal mixing layers at Mach number ranging from 0.2 to 0.4 and Reynolds number of 400. A characteristic-based formulation is used to solve by direct numerical simulation the compressible Navier-Stokes equations using high-order schemes. The radiated sound is directly computed in a domain that includes both the near-field aerodynamic source region and the far-field sound propagation. In the isothermal mixing layer, Mach number effects may be identified in the acoustic field through an increase of the directivity associated with the non-compactness of the acoustic sources. Baroclinic instability effects may be recognized in the non-isothermal mixing layer, as the presence of counter-rotating vorticity layers, the resulting acoustic sources being found less efficient. An analysis based on the acoustic analogy shows that the directivity increase with the Mach number can be associated with the emergence of density fluctuations of weak amplitude but very efficient in terms of noise generation at shallow angle. This influence, combined with convection and refraction effects, is found to shape the acoustic wavefront pattern depending on the Mach number.