Weak mixing and eigenvalues for arnoux-rauzy sequences


Autoria(s): Cassaigne, Julien; Ferenczi, Sébastien; Messaoudi, Ali
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

27/05/2014

27/05/2014

08/12/2008

Resumo

We define by simple conditions two wide subclasses of the socalled Arnoux-Rauzy systems; the elements of the first one share the property of (measure-theoretic) weak mixing, thus we generalize and improve a counterexample to the conjecture that these systems are codings of rotations; those of the second one have eigenvalues, which was known hitherto only for a very small set of examples.

Formato

1983-2005

Identificador

http://dx.doi.org/10.5802/aif.2403

Annales de l'Institut Fourier, v. 58, n. 6, p. 1983-2005, 2008.

0373-0956

http://hdl.handle.net/11449/70866

10.5802/aif.2403

2-s2.0-57049153521

Idioma(s)

eng

Relação

Annales de l'Institut Fourier

Direitos

openAccess

Palavras-Chave #Complexity #Eigenvalues #Symbolic dynamics
Tipo

info:eu-repo/semantics/article