Weak mixing and eigenvalues for arnoux-rauzy sequences
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
27/05/2014
27/05/2014
08/12/2008
|
Resumo |
We define by simple conditions two wide subclasses of the socalled Arnoux-Rauzy systems; the elements of the first one share the property of (measure-theoretic) weak mixing, thus we generalize and improve a counterexample to the conjecture that these systems are codings of rotations; those of the second one have eigenvalues, which was known hitherto only for a very small set of examples. |
Formato |
1983-2005 |
Identificador |
http://dx.doi.org/10.5802/aif.2403 Annales de l'Institut Fourier, v. 58, n. 6, p. 1983-2005, 2008. 0373-0956 http://hdl.handle.net/11449/70866 10.5802/aif.2403 2-s2.0-57049153521 |
Idioma(s) |
eng |
Relação |
Annales de l'Institut Fourier |
Direitos |
openAccess |
Palavras-Chave | #Complexity #Eigenvalues #Symbolic dynamics |
Tipo |
info:eu-repo/semantics/article |