969 resultados para metallographic microstructure


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microcrystalline silicon films were deposited by very high frequency (VHF) plasma-enhanced chemical vapor deposition (PECVD) with different hydrogen dilution. The microstructure of these films was investigated using Raman spectroscopy and infrared absorption (IR) spectra. The crystalline, amorphous, and grain boundary volume fractions X-c, X-a and X-gb were estimated from Raman measurements. An interface structure factor (R-if) is proposed to characterize the grain boundary volume fractions in IR spectroscopy. The density of states (DOS) of the microcrystalline crystalline silicon films were studied by phase-shift analysis of modulated photocurrent (MPC) and photoconductivity spectroscopy. It was observed that DOS increases with increasing grain boundary volume fractions, while the values of electron mobility-lifetime product mu T-e(e) disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

n-ZnO/p-Si heterojunction light-emitting diodes (LEDs) show weak defect-related electroluminescence (EL). In order to analyze the origin of the weak EL, the energy band alignment and interfacial microstructure of ZnO/Si heterojunction are investigated by x-ray photoelectron spectroscopy. The valence band offset (VBO) is determined to be 3.15 +/- 0.15 eV and conduction band offset is -0.90 +/- 0.15 eV, showing a type-II band alignment. The higher VBO means a high potential barrier for holes injected from Si into ZnO, and hence, charge carrier recombination takes place mainly on the Si side rather than the ZnO layer. It is also found that a 2.1 nm thick SiOx interfacial layer is formed at the ZnO/Si interface. The unavoidable SiOx interfacial layer provides to a large number of nonradiative centers at the ZnO/Si interface and gives rise to poor crystallinity in the ZnO films. The weak EL from the n-ZnO/p-Si LEDs can be ascribed to the high ZnO/Si VBO and existence of the SiOx interfacial layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructures in iron- and sulphur-doped InP crystals were studied using both electron microscopy and electron diffraction. A modulated structure has been found in S-doped InP crystal, where the commensurate modulations corresponded to periodicities of 0.68 nm and 0.7 nm in real space and were related to the reflections of the cubic lattice in [111] and [113BAR] directions; they were indexed as q111* = 1/2(a* + b* + c*) and q113BAR* = 1/4(-a* - b* + 3c*), respectively. Single atomic layers of iron precipitate were observed, with preferred orientations along which precipitates are formed. Simulated calculations by means of the dynamical theory of electron diffraction using models for the precipitate structure were in good agreement with our experimental results. The relation between the modulated structure and the precipitates is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low resistance and shallow ohmic contact to n-GaAs is performed by using Ge/Pd/GaAs trilayer structure and rapid thermal annealing process. The dependence of specific contact resistivity on the temperature of rapid thermal annealing is investigated. A good ohmic contact is formed after annealing at 400-500 degrees C for 60 s. The best specific contact resistivity is 1.4 x 10(-6) Omega cm(2). Auger electron spectroscopy (AES), secondary ion mass spectrometry (SIMS) and scanning electron microscopy (SEM) are used to analyze the interfacial microstructure. A strong correlation between the contact resistance and the film microstructure is observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A kind of hydrogenated diphasic silicon films has been prepared by a new regime of plasma enhanced chemical vapor deposition (PECVD) near the phase transition regime from amorphous to nanocrystalline. The microstructural properties of the films have been investigated by the micro-Raman and Fourier transformed Infrared (FT-IR) spectra and atom force microscopy (AFM). The obtained Raman spectra show not only the existence of nanoscaled crystallites, but also a notable improvement in the medium-range order of the diphasic films. For the FT-IR spectra of this kind of films, it notes that there is a blueshift in the Si-H stretching mode and a redshift in the Si-H wagging mode in respect to that of typical amorphous silicon film. We discussed the reasons responsible for these phenomena by means of the phase transition, which lead to the formation of a diatomic hydrogen complex, H-2* and their congeries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoluminescence (PL) from Er-implanted hydrogenated amorphous silicon suboxide (a-SiOX:H(x<2.0)) films was measured. Two luminescence bands with maxima at lambda congruent to 750 nm and lambda congruent to 1.54mum, ascribed to the a-SiOX:H intrinsic emission and Er3+ emission, were observed. Peak intensities of the two bands follow the same trend as a function of annealing temperature from 300 to 1000degreesC. Micro-Raman results indicate that the a-SiOX:H films are a mixture of two phases, an amorphous SiOX matrix and amorphous silicon (a-Si) domains embedded there in. FTIR spectra confirm that hydrogen effusion from a-SiOX:H films occurs during annealing. Hydrogen effusion leads to a reconstruction of the microstructure of a-Si domains, thus having a strong influence on Er3+ emission. Our study emphasizes the role of a-Si domains on Er3+ emission in a-SiOX:H films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cu samples were subjected to high-pressure torsion (HPT) with up to 6 turns at room temperature (RT) and liquid nitrogen temperature (LNT), respectively. The effects of temperature on grain refinement and microhardness variation were investigated. For the samples after HPT processing at RT, the grain size reduced from 43 mu m to 265 nm, and the Vickers microhardness increased from HV52 to HV140. However, for the samples after HPT processing at LNT, the value of microhardness reached its maximum of HV150 near the center of the sample and it decreased to HV80 at the periphery region. Microstructure observations revealed that HPT straining at LNT induced lamellar structures with thickness less than 100 nm appearing near the central region of the sample, but further deformation induced an inhomogeneous distribution of grain sizes, with submicrometer-sized grains embedded inside micrometer-sized grains. The submicrometer-sized grains with high dislocation density indicated their nonequilibrium nature. On the contrary, the micrometer-sized grains were nearly free of dislocation, without obvious deformation trace remaining in them. These images demonstrated that the appearance of micrometer-sized grains is the result of abnormal grain growth of the deformed fine grains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-crystalline spinel (MgAl2O4) specimens were implanted with helium ions of 100 keV at three successively increasing fluences of (0.5, 2.0 and 8.0) x 10(16) ions/cm(2) at room temperature. The specimens were subsequently annealed in vacuum at different temperatures ranging from 500 to 1100 degrees C. Different techniques, including Fourier transformed infrared spectroscopy (FTIR), thermal desorption spectrometry (TDS), atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to investigate the specimens, It was found that the absorbance peak in the FTIR due to the stretching vibration of the Al-O bond shifts to smaller wave numbers with increasing fluence, shifting back to larger wave numbers with an increase of annealing temperature. The absorbance peak shift has a linear relationship with the fluence increase in the as-implanted state, while it does not have a linear relationship with the fluence increase after the annealing process. Surface deformation occurred in the specimens implanted with fluences of 2.0 and 8.0 x 10(16) ions/cm(2) in the annealing process. The phenomena described above can be attributed to differences in defect formation in the specimens. (C) 2008 Elsevier B.V. All rights reserved.