940 resultados para high temperature superconductor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method of measuring the temperature of the fast electrons produced in ultraintense laser-plasma interactions is described by inducing photonuclear reactions, in particular (gamma,n) and (gamma,3n) reactions in tantalum. Analysis of the gamma rays emitted by the daughter nuclei of these reactions using a germanium counter enables a relatively straightforward near real-time temperature measurement to be made. This is especially important for high temperature plasmas where alternative diagnostic techniques are usually difficult and time consuming. This technique can be used while other experiments are being conducted. (C) 2002 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, ceria-yttria co-stabilized zirconia (CYSZ) free-standing coatings, deposited by air plasma spraying (APS), were isothermally annealed at 1315 °C in order to explore the effect of sintering on the microstructure and the mechanical properties (i.e., hardness and Young's modulus). To this aim, coating microstructure, before and after heat treatment, was analyzed using scanning electron microscopy, and image analysis was carried out in order to estimate porosity fraction. Moreover, Vickers microindentation and depth-sensing nanoindentation tests were performed in order to study the evolution of hardness and Young's modulus as a function of annealing time. The results showed that thermal aging of CYSZ coatings leads to noticeable microstructural modifications. Indeed, the healing of finer pores, interlamellar, and intralamellar microcracks was observed. In particular, the porosity fraction decreased from ~10 to ~5% after 50 h at 1315 °C. However, the X-ray diffraction analyses revealed that high phase stability was achieved, as no phase decomposition occurred after thermal aging. In turn, both the hardness and Young's modulus increased, in particular, the increase in stiffness (with respect to "as produced" samples) was equal to ~25%, whereas the hardness increased to up to ~60%. © 2010 Springer Science+Business Media, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High resolution synchrotron radiation core level photoemission measurements have been used to undertake a comparative study of the high temperature stability of ultrathin Al2O3 layers deposited by atomic layer deposition (ALD) on both sulphur passivated and native oxide covered InGaAs. The residual interfacial oxides between sulphur passivated InGaAs and the ultrathin Al2O3 layer can be substantially removed at high temperature (up to 700 °C) without impacting on the InGaAs stoichiometry while significant loss of indium was recorded at this temperature on the native oxide InGaAs surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recently discovered, high-temperature proton conductor, La0.99Sr0.01NbO4-δ, was used as a support for the electrochemical promotion of a platinum catalyst. Ethylene oxidation was used as a probe reaction in the temperature range 350-450 °C. Moderate non-Faradaic rate modification, attributable to a protonic promoting species, occurred under negative polarisation; some permanent promotion was also observed. In oxidative atmospheres, both the pO2 of the reaction mixture and the temperature influenced the type and magnitude of the observed rate modification. Rate-enhancement values of up to ρ = 1.4 and Faradaic-efficiency values approaching Λ = -100 were obtained. Promotion was observed under positive polarisation and relatively dry, oxygen-rich atmospheres suggesting that some oxygen ion conductivity may occur under these conditions. Impedance spectroscopy performed in atmospheres of 4 kPa O2/N2 and of 5 kPa H2/N2 under dry and slightly humidified (0.3 kPa H2O) conditions indicated that the electrical resistivity is heavily dominated by the grain-boundary response in the temperature range of the EPOC studies; much lower grain-boundary impedances in the wetter conditions are likely to be attributable to proton transport. © 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) composites containing 4 wt% MWCNTs were prepared by melt mixing followed by compression moulding into sheet. Compression moulded sheets were heated to just below the melting temperature and biaxially stretched at ratios (SRs) of 2, 2.5 and 3.0. The effect of stretching on the thermal and mechanical properties of the sheet was studied by differential scanning calorimetry (DSC) and tensile testing. DSC results show that the crystallinity of all the stretched samples increases by approximately 13% due to strain induced crystallization. The melting temperature of the biaxially stretched samples increases only slightly while crystallization temperature is not affected. Tensile test results indicate that at a SR of 2.5 the elastic modulus of the stretched composites increases by 17.6% relative to the virgin HDPE, but the breaking strength decreases by 33%. While the elastic modulus and breaking strength of the HDPE/MWCNT samples continue to increase as SR increases they drop off after a SR of 2.5 for the virgin HDPE. This is probably due to the constraining influence of the nanotubes preventing the relaxation of polymer chains caused by adiabatic heating at high SRs. The addition of MWCNTs results in significant strain hardening during deformation. While this will lead to increased energy requirement in forming it will also result in a more stable process and the ability to produce deep draw containers with more uniform wall thickness

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High resolution synchrotron radiation core level photoemission measurements have been used to undertake a comparative study ofthe high temperature thermal stability ofthe ammonium sulphide passivated InGaAs surface and the same surface following the atomic layer deposition (ALD) of an ultrathin (∼1 nm) Al2O3 layer. The solution based ex situ sulphur passivation was found to be effective at removing a significant amount of the native oxides and protecting the surface against re-oxidation upon air exposure. The residual interfacial oxides which form between sulphur passivated InGaAs and the ultrathin Al2O3 layer can be substantially removed at high temperature (up to 700 ◦C) without impacting on the InGaAs stoichiometry while significant loss of indium was recorded at this temperature on the uncovered sulphur passivated InGaAs surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High resolution soft x-ray photoemission spectroscopy (SXPS) have been used to study the high temperature thermal stability of ultra-thin atomic layer deposited (ALD) HfO2 layers (∼1 nm) on sulphur passivated and hydrofluoric acid (HF) treated germanium surfaces. The interfacial oxides which are detected for both surface preparations following HfO2 deposition can be effectively removed by annealing upto 700 °C without any evidence of chemical interaction at the HfO2/Ge interface. The estimated valence and conduction band offsets for the HfO2/Ge abrupt interface indicated that effective barriers exist to inhibit carrier injection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution soft x-ray photoemission spectroscopy (SXPS) has been used to study the high-temperature thermal stability of ultra-thin atomic layer deposited (ALD) Al2O3 layers (~1 nm) on sulfur passivated and native oxide covered InAs surfaces. While the arsenic oxides were removed from both interfaces following a 600 °C anneal, a residual indium oxide signal remained. No significant differences were observed between the sulfur passivated and native oxide surfaces other than the thickness of the interfacial oxide layer while the Al2O3 stoichiometry remained unaffected by the anneals. The energy band offsets were determined for the Al2O3 on the sulfur passivated InAs surface using both valence band edge and shallow core-level photoemission measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de doutoramento, Química (Química Tecnológica), Universidade de Lisboa, Faculdade de Ciências, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental and numerical investigation into the shear strength behaviour of adhesive single lap joints (SLJs) was carried out in order to understand the effect of temperature on the joint strength. The adherend material used for the experimental tests was an aluminium alloy in the form of thin sheets, and the adhesive used was a high-strength high temperature epoxy. Tensile tests as a function of temperature were performed and numerical predictions based on the use of a bilinear cohesive damage model were obtained. It is shown that at temperatures below Tg, the lap shear strength of SLJs increased, while at temperatures above Tg, a drastic drop in the lap shear strength was observed. Comparison between the experimental and numerical maximum loads representing the strength of the joints shows a reasonably good agreement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of AC losses in superconducting pancake coils is of utmost importance for the development of superconducting devices. Due to different technical difficulties this study is usually performed considering one of two approaches: considering superconducting coils of few turns and studying AC losses in a large frequency range vs. superconducting coils with a large number of turns but measuring AC losses only in low frequencies. In this work, a study of AC losses in 128 turn superconducting coils is performed, considering frequencies ranging from 50 Hz till 1152 Hz and currents ranging from zero till the critical current of the coils. Moreover, the study of AC losses considering two different simultaneous harmonic components is also performed and results are compared to the behaviour presented by the coils when operating in a single frequency regime. Different electrical methods are used to verify the total amount of AC losses in the coil and a simple calorimetric method is presented, in order to measure AC losses in a multi-harmonic context. Different analytical and numerical methods are implemented and/or used, to design the superconducting coils and to compute the total amount of AC losses in the superconducting system and a comparison is performed to verify the advantages and drawbacks of each method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results of axiswise measurements of the electrical conductivity (dc and ac) and dielectric constant of NH4H2PO4 confirm the occurrence of the recently suggested hightemperature phase transition in this crystal (at 133 °C). The corresponding transition in ND4D2PO4 observed here for the first time takes place at 141.5 °C. The mechanism involved in these transitions and those associated with the electrical conduction and dielectric anomalies are explained on the basis of the motional effects of the ammonium ions in these crystals. Conductivity values for deuterated crystals give direct evidence for the predominance of protonic conduction throughout the entire range of temperatures studied (30–260 °C).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron-phonon interaction is considered within the framework of the fluctuating valence of Cu atoms. Anderson's lattice Hamiltonian is suitably modified to take this into account. Using Green's function technique tbe possible quasiparticle excitations' are determined. The quantity 2delta k(O)/ kB Tc is calculated for Tc= 40 K. The calculated values are in good agreement with the experimental results.