929 resultados para high speed technology
Resumo:
A compact ultra-wideband (UWB) printed slot antenna is described, suitable for integration with the printed circuit board (PCB) of a wireless, universal, serial-bus dongle. The design comprises of a near-rectangular slot fed by a coplanar waveguide (CPW) printed on a PCB of size 20 × 30 mm2. It has a large bandwidth covering the 3.1–10.6 GHz UWB band, with omnidirectional radiation patterns. Further, a notched band centered at 5.45 GHz wireless local area network bands is obtained within the wide bandwidth by inserting a narrow slot inside the tuning stub. Details of the antenna design are described, and the experimental results of the constructed prototype are presented. The time domain studies on the antenna shows a linear phase response throughout the band except at the notched frequency. The transient analysis of the antenna indicates very little pulse distortion confirming its suitability for high speed wireless connectivity.
Resumo:
An ultra-wideband (UWB) printed slot antenna, suitable for integration with the printed circuit board (PCB) of a wireless universal serial-bus (WUSB) dongle is presented. The design comprises a near-rectangular slot fed by a coplanar waveguide printed on a PCB of width 20 mm. The proposed design has a large bandwidth covering the 3.1-10.6 GHz UWB band, unaffected by the ground length, and omnidirectional radiation patterns. A linear phase response throughout the band further confirms its suitability for high-speed wireless connectivity.
Resumo:
n the recent years protection of information in digital form is becoming more important. Image and video encryption has applications in various fields including Internet communications, multimedia systems, medical imaging, Tele-medicine and military communications. During storage as well as in transmission, the multimedia information is being exposed to unauthorized entities unless otherwise adequate security measures are built around the information system. There are many kinds of security threats during the transmission of vital classified information through insecure communication channels. Various encryption schemes are available today to deal with information security issues. Data encryption is widely used to protect sensitive data against the security threat in the form of “attack on confidentiality”. Secure transmission of information through insecure communication channels also requires encryption at the sending side and decryption at the receiving side. Encryption of large text message and image takes time before they can be transmitted, causing considerable delay in successive transmission of information in real-time. In order to minimize the latency, efficient encryption algorithms are needed. An encryption procedure with adequate security and high throughput is sought in multimedia encryption applications. Traditional symmetric key block ciphers like Data Encryption Standard (DES), Advanced Encryption Standard (AES) and Escrowed Encryption Standard (EES) are not efficient when the data size is large. With the availability of fast computing tools and communication networks at relatively lower costs today, these encryption standards appear to be not as fast as one would like. High throughput encryption and decryption are becoming increasingly important in the area of high-speed networking. Fast encryption algorithms are needed in these days for high-speed secure communication of multimedia data. It has been shown that public key algorithms are not a substitute for symmetric-key algorithms. Public key algorithms are slow, whereas symmetric key algorithms generally run much faster. Also, public key systems are vulnerable to chosen plaintext attack. In this research work, a fast symmetric key encryption scheme, entitled “Matrix Array Symmetric Key (MASK) encryption” based on matrix and array manipulations has been conceived and developed. Fast conversion has been achieved with the use of matrix table look-up substitution, array based transposition and circular shift operations that are performed in the algorithm. MASK encryption is a new concept in symmetric key cryptography. It employs matrix and array manipulation technique using secret information and data values. It is a block cipher operated on plain text message (or image) blocks of 128 bits using a secret key of size 128 bits producing cipher text message (or cipher image) blocks of the same size. This cipher has two advantages over traditional ciphers. First, the encryption and decryption procedures are much simpler, and consequently, much faster. Second, the key avalanche effect produced in the ciphertext output is better than that of AES.
Resumo:
The main objective of the present study was to explore ways of making latex products more cost effective and versatile. Polyethylene glycol was identified as a surface active agent in latex compounds which improves the filler-polymer interaction and also distributes the filler more uniformly. The use of such surface active agents can develop filled latex products with improved mechanical properties at a lower cost. In this study dispersions of carbon black and silica were successfully added to NR latex under high speed stirring without destabilizing latex.
Resumo:
This thesis is an outcome of the investigations carried out on the development of an Artificial Neural Network (ANN) model to implement 2-D DFT at high speed. A new definition of 2-D DFT relation is presented. This new definition enables DFT computation organized in stages involving only real addition except at the final stage of computation. The number of stages is always fixed at 4. Two different strategies are proposed. 1) A visual representation of 2-D DFT coefficients. 2) A neural network approach. The visual representation scheme can be used to compute, analyze and manipulate 2D signals such as images in the frequency domain in terms of symbols derived from 2x2 DFT. This, in turn, can be represented in terms of real data. This approach can help analyze signals in the frequency domain even without computing the DFT coefficients. A hierarchical neural network model is developed to implement 2-D DFT. Presently, this model is capable of implementing 2-D DFT for a particular order N such that ((N))4 = 2. The model can be developed into one that can implement the 2-D DFT for any order N upto a set maximum limited by the hardware constraints. The reported method shows a potential in implementing the 2-D DF T in hardware as a VLSI / ASIC
Resumo:
In recent years, there is a visible trend for products/services which demand seamless integration of cellular networks, WLANs and WPANs. This is a strong indication for the inclusion of high speed short range wireless technology in future applications. In this context UWB radio has a significant role to play as an extension/complement to existing cellular/access technology. In the present work, three major types of ultra wide band planar antennas are investigated: Monopole and Slot. Three novel compact UWB antennas, suitable for poratble applications, are designed and characterized, namely 1) Ground modified monopole 2) Serrated monopole 3) Triangular slot The performance of these designs have been studied using standard simulation tools used in industry/academia and they have been experimentally verified. Antenna design guidelines are also deduced by accounting the resonances in each structure. In addition to having compact sized, high efficiency and broad bandwidth antennas, one of the major criterion in the design of impulse-UWB systems have been the transmission of narrow band pulses with minimum distortion. The key challenge is not only to design a broad band antenna with constant and stable gain but to maintain a flat group delay or linear phase response in the frequency domain or excellent transient response in time domain. One of the major contributions of the thesis lies in the analysis of the frequency and timedomain response of the designed UWB antennas to confirm their suitability for portable pulsed-UWB systems. Techniques to avoid narrowband interference by engraving narrow slot resonators on the antenna is also proposed and their effect on a nano-second pulse have been investigated
Resumo:
Tropical cyclones genesis, movement and intensification are highly dependent on its environment both oceanic and atmospheric. This thesis has made a detailed study on the environmental factors related to tropical cyclones of North Indian Ocean basin. This ocean basin has produced only 6% of the global tropical cyclones annually but it has caused maximum loss of human life associated with the strong winds, heavy rain and particularly storm surges that accompany severe cyclones as they strike the heavily populated coastal areas. Atmospheric factors studied in the thesis are the moisture content of the atmosphere, instability of the atmosphere that produces thunderstorms which are the main source of energy for the tropical cyclone, vertical wind shear to which cyclones are highly sensitive and the Sub-Tropical westerly Jetsteram and its Asian high speed center. The oceanic parameters studied are sea surface temperature and heat storage in the top layer of the ocean. A major portion of the thesis has dealt with the three temporal variabilities of tropical cyclone frequency namely intra-seasonal (mainly the influence of Madden Julian Oscillation), inter- annual (the relation with El Nino Southern Oscillation) and decadal variabilities. Regarding decadal variability, a prominent four decade oscillation in the frequency of both tropical cyclones and monsoon depressions unique to the Indian Ocean basin has been brought out. The thesis consists of 9 chapters.
Resumo:
Light in its physical and philosophical sense has captured the imagination of human mind right from the dawn of civilization. The invention of lasers in the 60’s caused a renaissance in the field of optics. This intense, monochromatic, highly directional radiation created new frontiers in science and technology. The strong oscillating electric field of laser radiation creates a. polarisation response that is nonlinear in character in the medium through which it passes and the medium acts as a new source of optical field with alternate properties. It was in this context, that the field of optoelectronics which encompasses the generation, modulation, transmission etc. of optical radiation has gained tremendous importance. Organic molecules and polymeric systems have emerged as a class of promising materials of optoelectronics because they offer the flexibility, both at the molecular and bulk levels, to optimize the nonlinearity and other suitable properties for device applications. Organic nonlinear optical media, which yield large third-order nonlinearities, have been widely studied to develop optical devices like high speed switches, optical limiters etc. Transparent polymeric materials have found one of their most promising applicationsin lasers, in which they can be used as active elements with suitable laser dyes doped in it. The solid-matrix dye lasers make possible combination of the advantages of solid state lasers with the possibility of tuning the radiation over a broad spectral range. The polymeric matrices impregnated with organic dyes have not yet widely used because of the low resistance of the polymeric matrices to laser damage, their low dye photostability, and low dye stability over longer time of operation and storage. In this thesis we investigate the nonlinear and radiative properties of certain organic materials and doped polymeric matrix and their possible role in device development
Resumo:
Residue Number System (RNS) based Finite Impulse Response (FIR) digital filters and traditional FIR filters. This research is motivated by the importance of an efficient filter implementation for digital signal processing. The comparison is done in terms of speed and area requirement for various filter specifications. RNS based FIR filters operate more than three times faster and consumes only about 60% of the area than traditional filter when number of filter taps is more than 32. The area for RNS filter is increasing at a lesser rate than that for traditional resulting in lower power consumption. RNS is a nonweighted number system without carry propogation between different residue digits.This enables simultaneous parallel processing on all the digits resulting in high speed addition and multiplication in the RNS domain
Resumo:
The recent trends envisage multi-standard architectures as a promising solution for the future wireless transceivers to attain higher system capacities and data rates. The computationally intensive decimation filter plays an important role in channel selection for multi-mode systems. An efficient reconfigurable implementation is a key to achieve low power consumption. To this end, this paper presents a dual-mode Residue Number System (RNS) based decimation filter which can be programmed for WCDMA and 802.16e standards. Decimation is done using multistage, multirate finite impulse response (FIR) filters. These FIR filters implemented in RNS domain offers high speed because of its carry free operation on smaller residues in parallel channels. Also, the FIR filters exhibit programmability to a selected standard by reconfiguring the hardware architecture. The total area is increased only by 24% to include WiMAX compared to a single mode WCDMA transceiver. In each mode, the unused parts of the overall architecture is powered down and bypassed to attain power saving. The performance of the proposed decimation filter in terms of critical path delay and area are tabulated.
Resumo:
The recent trends envisage multi-standard architectures as a promising solution for the future wireless transceivers. The computationally intensive decimation filter plays an important role in channel selection for multi-mode systems. An efficient reconfigurable implementation is a key to achieve low power consumption. To this end, this paper presents a dual-mode Residue Number System (RNS) based decimation filter which can be programmed for WCDMA and 802.11a standards. Decimation is done using multistage, multirate finite impulse response (FIR) filters. These FIR filters implemented in RNS domain offers high speed because of its carry free operation on smaller residues in parallel channels. Also, the FIR filters exhibit programmability to a selected standard by reconfiguring the hardware architecture. The total area is increased only by 33% to include WLANa compared to a single mode WCDMA transceiver. In each mode, the unused parts of the overall architecture is powered down and bypassed to attain power saving. The performance of the proposed decimation filter in terms of critical path delay and area are tabulated
Resumo:
In recent years, reversible logic has emerged as one of the most important approaches for power optimization with its application in low power CMOS, nanotechnology and quantum computing. This research proposes quick addition of decimals (QAD) suitable for multi-digit BCD addition, using reversible conservative logic. The design makes use of reversible fault tolerant Fredkin gates only. The implementation strategy is to reduce the number of levels of delay there by increasing the speed, which is the most important factor for high speed circuits.
Resumo:
This paper presents a performance analysis of reversible, fault tolerant VLSI implementations of carry select and hybrid decimal adders suitable for multi-digit BCD addition. The designs enable partial parallel processing of all digits that perform high-speed addition in decimal domain. When the number of digits is more than 25 the hybrid decimal adder can operate 5 times faster than conventional decimal adder using classical logic gates. The speed up factor of hybrid adder increases above 10 when the number of decimal digits is more than 25 for reversible logic implementation. Such highspeed decimal adders find applications in real time processors and internet-based applications. The implementations use only reversible conservative Fredkin gates, which make it suitable for VLSI circuits.
Resumo:
The Towed Array electronics is a multi-channel simultaneous real time high speed data acquisition system. Since its assembly is highly manpower intensive, the costs of arrays are prohibitive and therefore any attempt to reduce the manufacturing, assembly, testing and maintenance costs is a welcome proposition. The Network Based Towed Array is an innovative concept and its implementation has remarkably simplified the fabrication, assembly and testing and revolutionised the Towed Array scenario. The focus of this paper is to give a good insight into the Reliability aspects of Network Based Towed Array. A case study of the comparison between the conventional array and the network based towed array is also dealt with
Resumo:
Scanning Probe Microscopy (SPM) has become of fundamental importance for research in area of micro and nano-technology. The continuous progress in these fields requires ultra sensitive measurements at high speed. The imaging speed limitation of the conventional Tapping Mode SPM is due to the actuation time constant of piezotube feedback loop that keeps the tapping amplitude constant. In order to avoid this limit a deflection sensor and an actuator have to be integrated into the cantilever. In this work has been demonstrated the possibility of realisation of piezoresistive cantilever with an embedded actuator. Piezoresistive detection provides a good alternative to the usual optical laser beam deflection technique. In frames of this thesis has been investigated and modelled the piezoresistive effect in bulk silicon (3D case) for both n- and p-type silicon. Moving towards ultra-sensitive measurements it is necessary to realize ultra-thin piezoresistors, which are well localized to the surface, where the stress magnitude is maximal. New physical effects such as quantum confinement which arise due to the scaling of the piezoresistor thickness was taken into account in order to model the piezoresistive effect and its modification in case of ultra-thin piezoresistor (2D case). The two-dimension character of the electron gas in n-type piezoresistors lead up to decreasing of the piezoresistive coefficients with increasing the degree of electron localisation. Moreover for p-type piezoresistors the predicted values of the piezoresistive coefficients are higher in case of localised holes. Additionally, to the integration of the piezoresistive sensor, actuator integrated into the cantilever is considered as fundamental for realisation of fast SPM imaging. Actuation of the beam is achieved thermally by relying on differences in the coefficients of thermal expansion between aluminum and silicon. In addition the aluminum layer forms the heating micro-resistor, which is able to accept heating impulses with frequency up to one megahertz. Such direct oscillating thermally driven bimorph actuator was studied also with respect to the bimorph actuator efficiency. Higher eigenmodes of the cantilever are used in order to increase the operating frequencies. As a result the scanning speed has been increased due to the decreasing of the actuation time constant. The fundamental limits to force sensitivity that are imposed by piezoresistive deflection sensing technique have been discussed. For imaging in ambient conditions the force sensitivity is limited by the thermo-mechanical cantilever noise. Additional noise sources, connected with the piezoresistive detection are negligible.