986 resultados para fracture reduction
Resumo:
A chemoselective, neutral, and efficient strategy for the reduction of azides to corresponding amines catalyzed by dioxobis(N,N,-diethyldithiocarbamato) molybdenum complex (1, MoO2[S2CNEt2](2)) in the presence of phenylsilane is discovered. This chemoselective reduction strategy tolerates a variety of reducible functional groups.
Resumo:
In this paper, numerical modelling of fracture in concrete using two-dimensional lattice model is presented and also a few issues related to lattice modelling technique applicable to concrete fracture are reviewed. A comparison is made with acoustic emission (AE) events with the number of fractured elements. To implement the heterogeneity of the plain concrete, two methods namely, by generating grain structure of the concrete using Fuller's distribution and the concrete material properties are randomly distributed following Gaussian distribution are used. In the first method, the modelling of the concrete at meso level is carried out following the existing methods available in literature. The shape of the aggregates present in the concrete are assumed as perfect spheres and shape of the same in two-dimensional lattice network is circular. A three-point bend (TPB) specimen is tested in the experiment under crack mouth opening displacement (CMOD) control at a rate of 0.0004 mm/sec and the fracture process in the same TPB specimen is modelled using regular triangular 2D lattice network. Load versus crack mouth opening isplacement (CMOD) plots thus obtained by using both the methods are compared with experimental results. It was observed that the number of fractured elements increases near the peak load and beyond the peak load. That is once the crack starts to propagate. AE hits also increase rapidly beyond the peak load. It is compulsory here to mention that although the lattice modelling of concrete fracture used in this present study is very similar to those already available in literature, the present work brings out certain finer details which are not available explicitly in the earlier works.
Resumo:
Chips were produced by orthogonal Cutting of cast pure magnesium billet with three different tool rake angles viz., -15 degrees, -5 degrees and +15 degrees on a lathe. Chip consolidation by solid state recycling technique involved cold compaction followed by hot extrusion. The extruded products were characterized for microstructure and mechanical properties. Chip-consolidated products from -15 degrees rake angle tools showed 19% increase in tensile strength, 60% reduction ingrain size and 12% increase in hardness compared to +15 degrees rake chip-consolidated product indicating better chip bonding and grain refinement. Microstructure of the fracture specimen Supports the abovefinding. On the overall, the present work high lights the importance of tool take angle in determining the quality of the chip-consolidated products. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The purpose of the present study was to investigate the effects of low-intensity ultrasound on bioabsorbable self-reinforced poly-L-lactide (SR-PLLA) screws and on fracture healing after SR-PLLA device fixation in experimental and clinical cancellous bone fracture. In the first experimental study, the assessment of the mechanical strengths of the SR-PLLA screws was performed after 12 weeks of daily 20-minute ultrasound exposure in vitro. In the second experimental study, 32 male Wistar rats with an experimental distal femur osteotomy fixed with an SR-PLLA rod were exposed for daily low-intensity ultrasound treatment for 21 days. The effects on the healing bone were assessed. The clinical studies consist of three prospective, randomized, and placebo-controlled series of dislocated lateral malleolar fractures fixed with one SR-PLLA screw. The total number of the patients in these series was 52. Half of the patients were provided randomly with a sham ultrasound device. The patients underwent ultrasound therapy 20 minutes daily for six weeks. Radiological bone healing was assessed both by radiographs at two, six, nine, and 12 weeks and by multidetector computed tomography (MDCT) scans at two weeks, nine weeks, and 18 months. Bone mineral density was assessed by dual-energy X-ray absorptiometry (DXA). The clinical outcome was assessed by both Olerud-Molander scoring and clinical examination of the ankle. Low-intensity ultrasound had no effects on the mechanical properties and degradation behaviour of the SR-PLLA screws in vitro. There were no obvious signs of low-intensity ultrasound-induced enhancement in the bone healing in SR-PLLA-rod-fixed metaphyseal distal femur osteotomy in rats. The biocompatibility of low-intensity ultrasound treatment and SR-PLLA was found to be good. In the clinical series low-intensity ultrasound was observed to have no obvious effects on the bone mineral density of the fractured lateral malleolus. There were no obvious differences in the radiological bone healing times of the SR-PLLA-screw-fixed lateral malleolar fractures after low-intensity ultrasound treatment. Low-intensity ultrasound did not have any effects on radiological bone morphology, bone mineral density or clinical outcome 18 months after the injury. There were no obvious findings in the present study to support the hypothesis that low-intensity pulsed ultrasound enhances bone healing in SR-PLLA-rod-fixed experimental metaphyseal distal femur osteotomy in rats or in clinical SR-PLLA-screw-fixed lateral malleolar fractures. It is important to limit the conclusions of the present set of studies only to lateral malleolar fractures fixed with an SR-PLLA screw.
Resumo:
A direct borohydride-hydrogen peroxide fuel cell employing carbon-supported Prussian Blue (PB) as mediated electron-transfer cathode catalyst is reported. While operating at 30 °C, the direct borohydride-hydrogen peroxide fuel cell employing carbon-supported PB cathode catalyst shows superior performance with the maximum output power density of 68 mW cm−2 at an operating voltage of 1.1 V compared to direct borohydride-hydrogen peroxide fuel cell employing the conventional gold-based cathode with the maximum output power density of 47 mW cm−2 at an operating voltage of 0.7 V. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Analysis (EDAX) suggest that anchoring of Cetyl-Trimethyl Ammonium Bromide (CTAB) as a surfactant moiety on carbon-supported PB affects the catalyst morphology. Polarization studies on direct borohydride-hydrogen peroxide fuel cell with carbon-supported CTAB-anchored PB cathode exhibit better performance with the maximum output power density of 50 mW cm−2 at an operating voltage of 1 V than the direct borohydride-hydrogen peroxide fuel cell with carbon-supported Prussian Blue without CTAB with the maximum output power density of 29 mW cm−2 at an operating voltage of 1 V.
Resumo:
Notched three-point bend specimens (TPB) were tested under crack mouth opening displacement (CMOD) control at a rate of 0.0004 mm/s and the entire fracture process was simulated using a regular triangular two-dimensional lattice network only over the expected fracture proces zone width. The rest of the beam specimen was discretised by a coarse triangular finite element mesh. The discrete grain structure of the concrete was generated assuming the grains to be spherical. The load versus CMOD plots thus simulated agreed reasonably well with the experimental results. Moreover, acoustic emission (AE) hits were recorded during the test and compared with the number of fractured lattice elements. It was found that the cumulative AE hits correlated well with the cumulative fractured lattice elements at all load levels thus providing a useful means for predicting when the micro-cracks form during the fracturing process, both in the pre-peak and in the post-peak regimes.
Resumo:
We demonstrate the presence of nonstructural protein 1 (NS1)-specific antibodies in a significant proportion of convalescent-phase human serum samples obtained from a cohort in an area where Japanese encephalitis virus (JEV) is endemic. Sera containing antibodies to NS1 but not those with antibodies to other JEV proteins, such as envelope, brought about complement-mediated lysis of JEV-infected BHK-21 cells. Target cells infected with a recombinant poxvirus expressing JEV NS1 on the cell surface confirmed the NS1 specificity of cytolytic antibodies. Mouse anti-NS1 cytolytic sera caused a complement-dependent reduction in virus output from infected human cells, demonstrating their important role in viral control. Antibodies elicited by JEV NS1 did not cross lyse West Nile virus- or dengue virus-infected cells despite immunoprecipitating the NS1 proteins of these related flaviviruses. Additionally, JEV NS1 failed to bind complement factor H, in contrast to NS1 of West Nile virus, suggesting that the NS1 proteins of different flaviviruses have distinctly different mechanisms for interacting with the host. Our results also point to an important role for JEV NS1-specific human immune responses in protection against JE and provide a strong case for inclusion of the NS1 protein in next generation of JEV vaccines.
Femoral shaft fractures in adults: Epidemiology, fracture patterns, nonunions, and fatigue fractures
Resumo:
The objective of the present study is to develop the reaction mechanism and kinetics of photoreduction of NO by CO. For this purpose, the reactions were conducted in the presence of Pd-ion-substituted nano-TiO2, Ti1-xPdxO2-delta, which was synthesized via a solution combustion method. The photocatalytic activity was investigated with unsubstituted TiO2, 1% Pd/TiO2(imp), and Ti1-xPdxO2-delta (where x = 0.05-0.3). No appreciable NO conversion was observed over unsubstituted TiO2, although, despite competitive adsorption of NO and CO on the Pd2+ sites, there was a significant reduction of NO over Ti1-xPdxO2-delta. The kinetic model showed that the enhanced catalytic activity is due to the NO photodissociation at the oxide-ion vacancy.
Resumo:
Acoustic emission (AE) energy, instead of amplitude, associated with each of the event is used to estimate the fracture process zone (FPZ) size. A steep increase in the cumulative AE energy of the events with respect to time is correlated with the formation of FPZ. Based on the AE energy released during these events and the locations of the events, FPZ size is obtained. The size-independent fracture energy is computed using the expressions given in the boundary effect model by least squares method since over-determined system of equations are obtained when data from several specimens are used. Instead of least squares method a different method is suggested in which the transition ligament length, measured from the plot of histograms of AE events plotted over the un-cracked ligament, is used directly to obtain size-independent fracture energy. The fracture energy thus calculated seems to be size-independent.
Resumo:
To mitigate the effects of climate change, countries worldwide are advancing technologies to reduce greenhouse gas emissions. This paper proposes and measures optimal production resource reallocation using data envelopment analysis. This research attempts to clarify the effect of optimal production resource reallocation on CO2 emissions reduction, focusing on regional and industrial characteristics. We use finance, energy, and CO2 emissions data from 13 industrial sectors in 39 countries from 1995 to 2009. The resulting emissions reduction potential is 2.54 Gt-CO2 in the year 2009, with former communist countries having the largest potential to reduce CO2 emissions in the manufacturing sectors. In particular, basic material industry including chemical and steel sectors has a lot of potential to reduce CO2 emissions.
Resumo:
Reducing carbon dioxide (CO2) to hydrocarbon fuel with solar energy is significant for high-density solar energy storage and carbon balance. In this work, single palladium/platinum (Pd/Pt) atoms supported on graphitic carbon nitride (g-C3N4), i.e. Pd/g-C3N4 and Pt/g-C3N4, acting as photocatalysts for CO2 reduction were investigated by density function theory (DFT) calcu-lations for the first time. During CO2 reduction, the individual metal atoms function as the active sites, while g-C3N4 provides the source of hydrogen (H*) from hydrogen evolution reaction. The complete, as-designed photocatalysts exhibit excellent activity in CO2 reduction. HCOOH is the preferred product of CO2 reduction on the Pd/g-C3N4 catalyst with a rate-determining barrier of 0.66 eV, while the Pt/g-C3N4 catalyst prefers to reduce CO2 to CH4 with a rate-determining barrier of 1.16 eV. In addition, depositing atom catalysts on g-C3N4 significantly enhances the visible light absorption, rendering them ideal for visible light reduction of CO2. Our findings open a new avenue of CO2 reduction for renewable energy supply.
Resumo:
In this paper an attempt is made to study accurately, the field distribution for various types of porcelain/ceramic insulators used forhigh voltage transmission. The surface charge Simulation method is employed for the field computation. Novel field reduction electrodes are developed to reduce the maximum field around the pin region. In order to experimentally scrutinize the performance of discs with field reduction electrodes, special artificial pollution test facility was built and utilized. The experimental results show better improvement in the pollution flashover performance of string insulators.