1000 resultados para complex script
Resumo:
Multiresolution synthetic aperture radar (SAR) image formation has been proven to be beneficial in a variety of applications such as improved imaging and target detection as well as speckle reduction. SAR signal processing traditionally carried out in the Fourier domain has inherent limitations in the context of image formation at hierarchical scales. We present a generalized approach to the formation of multiresolution SAR images using biorthogonal shift-invariant discrete wavelet transform (SIDWT) in both range and azimuth directions. Particularly in azimuth, the inherent subband decomposition property of wavelet packet transform is introduced to produce multiscale complex matched filtering without involving any approximations. This generalized approach also includes the formulation of multilook processing within the discrete wavelet transform (DWT) paradigm. The efficiency of the algorithm in parallel form of execution to generate hierarchical scale SAR images is shown. Analytical results and sample imagery of diffuse backscatter are presented to validate the method.
Resumo:
Cells of every living organism on our planet − bacterium, plant or animal − are organized in such a way that despite differences in structure and function they utilize the same metabolic energy represented by electrochemical proton gradient across a membrane. This gradient of protons is generated by the series of membrane bound multisubunit proteins, Complex I, II, III and IV, organized in so-called respiratory or electron transport chain. In the eukaryotic cell it locates in the inner mitochondrial membrane while in the bacterial cell it locates in the cytoplasmic membrane. The function of the respiratory chain is to accept electrons from NADH and ubiquinol and transfer them to oxygen resulting in the formation of water. The free energy released upon these redox reactions is converted by respiratory enzymes into an electrochemical proton gradient, which is used for synthesis of ATP as well as for many other energy dependent processes. This thesis is focused on studies of the first member of the respiratory chain − NADH:ubiquinone oxidoreductase or Complex I. This enzyme has a boot-shape structure with hydrophilic and hydrophobic domains, the former of which has all redox groups of the protein, the flavin and eight to nine iron-sulfur clusters. Complex I serves as a proton pump coupling transfer of two electrons from NADH to ubiquinone to the translocation of four protons across the membrane. So far the mechanism of energy transduction by Complex I is unknown. In the present study we applied a set of different methods to study the electron and proton transfer reactions in Complex I from Escherichia coli. The main achievement was the experiment that showed that the electron transfer through the hydrophilic domain of Complex I is unlikely to be coupled to proton transfer directly or to conformational changes in the protein. In this work for the first time properties of all redox centers of Complex I were characterized in the intact purified bacterial enzyme. We also probed the role of several conserved amino acid residues in the electron transfer of Complex I. Finally, we found that highly conserved amino acid residues in several membrane subunits form a common pattern with a very prominent feature – the presence of a few lysines within the membrane. Based on the experimental data, we suggested a tentative principle which may govern the redox-coupled proton pumping in Complex I.
Resumo:
The X-ray crystal structures of 4-butyl-1,2-diphenylpyrazolidine-3,5-dione (phenylbutazone)(I). and its 2 : 1 complex (II) with piperazine have been determined by direct methods and the structures refined to R 0.096 (2 300 observed reflections measured by diffractometer) and 0.074 (2 494 observed reflections visuallyestimated). Crystals are monoclinic, space group P21/c; for (I)a= 21.695(4), b= 5.823(2), c= 27.881(4)Å, = 108.06 (10)°, Z= 8, and for (II)a= 8.048(4), b= 15.081(4), c= 15.583(7)Å, = 95.9(3)°, Z= 2. The two crystallographically independant molecules in the structure of (I) are similar except for the conformation of the butyl group, which is disordered in one of the molecules. In the pyrazolidinedione group, the two C–C bonds are single and the two C–O bonds double. The two nitrogen atoms in the five-membered ring are pyramidal with the attached phenyl groups lying on the opposite sides of the mean plane of the ring. The phenylbutazone molecule in (II) exists as a negative ion owing to deprotonation of C-4. C-4 is therefore trigonal and the orientation of the Bu group with respect to the pyrazolidinedione group is considerably different from that in (I); there is also considerable electron delocalization along the C–O and C–C bonds. These changes in geometry and electronic structure may relate to biological activity. The doubly charged cationic piperazine molecule exists in the chair form with the nitrogen atoms at the apices. The crystal structure of (II) is stabilized by ionic interactions and N–H O hydrogen bonds.
Resumo:
This thesis is a development of a methodology to predict the radio transmitter signal attenuation, via vertical density profiling of digitised objects, through the use of Light Detection and Ranging (LiDaR) measurements. The resulting map of indexed signal attenuation is useful for dynamic radio transmitter placement within the geospatial data set without expensive and tedious radio measurements.
Resumo:
This paper will discuss the complexities of the role of contemporary dancer in this current epoch, with a particular focus on the multiple identities dancers embody within dance practice and how these accumulate to form a creative self-in-process or ‘moving identity’. Wider issues, such as training will be explored questioning how technical skills can be imparted alongside autonomous learning approaches to ensure that dancers are prepared to negotiate the entrepreneurial ecology of various dance sectors. Furthermore, the paper will examine the shifting relationship between choreographer and dancer from hierarchical to co-creative including how, in spite of the often collaborative nature of dance creation, the marketplace continues to celebrate the singular authorial position of the choreographer. Each of these elements will reflect back the complex issues of agency and creative self-hood that dancers must negotiate in an increasingly diverse and changeable arts environment.
Resumo:
A ternary metal complex involving Vitamin B6 with the formula [Cu(bipy)(pn) (OH)]H2O (bipy = 2,2'²-bipyridine, PN = anionic pyridoxine) has been synthesized and studied in the solid state by means of spectroscopy and X-ray crystallography. The geometry around copper(II) is distorted square pyramidal, two oxygens from phenolic and 4-(hydroxymethyl) groups of pn, two nitrogens from bipy and an axial OH- ion forming the coordination sphere. In this structure pn exists in a new anionic form with deprotonation of the phenolic group. The structure also provides a rare example of monodentate hydroxyl coordination to copper.
Resumo:
Silk gland cells ofBombyx mori undergo chromosomal endoduplication throughout larval development. The DNA content of both posterior and middle silk gland nuclei increased by 300000 times the haploid genomic content, amounting to 18 rounds of replication. The DNA doubling time is approximately 48 h and 24 h during the fourth and fifth instars of larval development. However, DNA content does not change during the interim moult. Concomitant with DNA content, DNA polymerase activity also increases as development progressed. Enzyme activity is predominantly due to DNA polymerase with no detectable level of polymerase . DNA polymerase from silk gland extracts was purified to homogeneity (using a series of columns involving ionexchange, gel-filtration and affintiy chromatography), resulting in a 4000-fold increase in specific activity. The enzyme is a heterogeneous multimer of high molecular mass, and the catalytic (polymerase) activity is resident in the 180-kDa subunit. The enzyme shows a PI of 6.2 and theKm values for the dNTP vary over 5-16 . The polymerase is tightly associated with primase activity and initiates primer synthesis in the presence of ribonucleoside triphosphates on a single-stranded DNA template. The primase activity is resident in the 45-kDa subunit. The enzyme is devoid of any detectable exonuclease activity. The abundance of DNA polymerase α in silk glands and its strong association with the nuclear matrix suggest a role in the DNA endoduplication process.
Resumo:
Proximity of molecules is a crucial factor in many solid- state photochemical processes.'S2 The biomolecular photodimerization reactions in the solid state depend on the relative geometry of reactant molecules in the crystal lattice with center-to-center distance of nearest neighbor double bonds of the order of ca. 4 A. This fact emanates from the incisive studies of Schmidt and Cohen.2 One of the two approaches to achieve this distance requirement is the so-called "Crystal-Engineering" of structures, which essentially involves the introduction of certain functional groups that display in-plane interstacking interactions (Cl...Cl, C-He-0, etc.) in the crystal The chloro group is by far the most successful in promoting the /3- packing m ~ d e ,th~o,u~gh recent studies have shown its limitations? Another approach involves the use of constrained media in which the reactants could hopefully be aligned.
Resumo:
Prediction of thermodynamic parameters of protein-protein and antigen-antibody complex formation from high resolution structural parameters has recently received much attention, since an understanding of the contributions of different fundamental processes like hydrophobic interactions, hydrogen bonding, salt bridge formation, solvent reorganization etc. to the overall thermodynamic parameters and their relations with the structural parameters would lead to rational drug design. Using the results of the dissolution of hydrocarbons and other model compounds the changes in heat capacity (DeltaCp), enthalpy (DeltaH) and entropy (DeltaS) have been empirically correlated with the polar and apolar surface areas buried during the process of protein folding/unfolding and protein-ligand complex formation. In this regard, the polar and apolar surfaces removed from the solvent in a protein-ligand complex have been calculated from the experimentally observed values of changes in heat capacity (DeltaCp) and enthalpy (DeltaH) for protein-ligand complexes for which accurate thermodynamic and high resolution structural data are available, and the results have been compared with the x-ray crystallographic observations. Analyses of the available results show poor correlation between the thermodynamic and structural parameters. Probable reasons for this discrepancy are mostly related with the reorganization of water accompanying the reaction which is indeed proven by the analyses of the energetics of the binding of the wheat germ agglutinin to oligosaccharides.
Resumo:
An unusual copper(II) complex [Cu(L-1a)(2)Cl-2] CH3OH center dot H2O center dot H3O+Cl- (1a) was isolated from a solution of a novel tricopper(II) complex [Cu-3(HL1)Cl-2]Cl-3 center dot 2H(2)O (1) in methanol. where L-1a is 3-(2-pyridyl)triazolo [1,5-a]-pyridine, and characterized with single crystal X-ray diffraction study. The tricopper(II) complex of potential ligand 1,5-bis(di-2-pyridyl ketone) carbohydrazone (H2L1) was synthesized and physicochemically characterized, while the formation of the complex la was followed by time-dependant monitoring of the UV-visible spectra. which reveals degradation of ligand backbone as intensity loss of bands corresponding to O -> Cu(II) charge transfer.
Resumo:
Le Corbusier participated in an urban dialogue with the first group in France to call itself fascist: the journalist Georges Valois’s militant Faisceau des Combattants et Producteurs (1925-1927), the “Blue Shirts,” inspired by the Italian “Fasci” of Mussolini. Le Corbusier’s portrait photograph materialised on the front cover of the January 1927 issue of the Faisceau League’s newspaper Le Nouveau Siècle edited by the former anarcho-syndicalist journalist Georges Valois, its leader, who fashioned himself as the French Mussolini. Le Corbusier was described in the Revue as one of les animateurs (the “organisers”) of the Party1 – meaning a member of the technical elite who would drive the Faisceau’s plans. On 1 May 1927, the Nouveau Siècle printed a full-page feature “Le Plan Voisin” on Le Corbusier’s 1922 redesign of Paris : the architect’s single-point perspective sketch appeared below an extract lifted from the architect’s original polemic Le Centre de Paris on the pages of Le Corbusier’s second book Urbanisme published two years earlier, a treatise on urbanism.2 Three weeks later, Le Corbusier presented a slide show of his urban plans at a fascist rally for the inauguration of the Faisceau’s new headquarters on the rue du faubourg Poissonniere, thereby crystalising the architect’s hallowed status in the league...
Resumo:
There has been a recent spate of high profile infrastructure cost overruns in Australia and internationally. This is just the tip of a longer-term and more deeply-seated problem with initial budget estimating practice, well recognised in both academic research and industry reviews: the problem of uncertainty. A case study of the Sydney Opera House is used to identify and illustrate the key causal factors and system dynamics of cost overruns. It is conventionally the role of risk management to deal with such uncertainty, but the type and extent of the uncertainty involved in complex projects is shown to render established risk management techniques ineffective. This paper considers a radical advance on current budget estimating practice which involves a particular approach to statistical modelling complemented by explicit training in estimating practice. The statistical modelling approach combines the probability management techniques of Savage, which operate on actual distributions of values rather than flawed representations of distributions, and the data pooling technique of Skitmore, where the size of the reference set is optimised. Estimating training employs particular calibration development methods pioneered by Hubbard, which reduce the bias of experts caused by over-confidence and improve the consistency of subjective decision-making. A new framework for initial budget estimating practice is developed based on the combined statistical and training methods, with each technique being explained and discussed.