883 resultados para complex polymerization method
Resumo:
An arch-shaped beam with different configurations under electrostatic loading experiences either the direct pull-in instability or the snap-through first and then the pull-in instability. When the pull-in instability occurs, the system collides with the electrode and adheres to it, which usually causes the system failure. When the snap-through instability occurs, the system experiences a discontinuous displacement to flip over without colliding with the electrode. The snap-through instability is an ideal actuation mechanism because of the following reasons: (1) after snap-through the system regains the stability and capability of withstanding further loading; (2) the system flips back when the loading is reduced, i.e. the system can be used repetitively; and (3) when approaching snap-through instability the system effective stiffness reduces toward zero, which leads to a fast flipping-over response. To differentiate these two types of instability responses for an arch-shaped beam is vital for the actuator design. For an arch-shaped beam under electrostatic loading, the nonlinear terms of the mid-plane stretching and the electrostatic loading make the analytical solution extremely difficult if not impossible and the related numerical solution is rather complex. Using the one mode expansion approximation and the truncation of the higher-order terms of the Taylor series, we present an analytical solution here. However, the one mode approximation and the truncation error of the Taylor series can cause serious error in the solution. Therefore, an error-compensating mechanism is also proposed. The analytical results are compared with both the experimental data and the numerical multi-mode analysis. The analytical method presented here offers a simple yet efficient solution approach by retaining good accuracy to analyze the instability of an arch-shaped beam under electrostatic loading.
Resumo:
Surface initiated polymerization (SIP) has become an attractive method for tailoring physical and chemical properties of surfaces for a broad range of applications. Most of those application relied on the merit of a high density coating. In this study we explored a long overlooked field of SIP. SIP from substrates of low initiator density. We combined ellipsometry with AFM to investigate the effect of initiatior density and polymerization time on the morphology of polymer coatings. In addition, we carefully adjusted the nanoscale separation of polymer chains to achieve a balance between nonfouling and immobilization capacities. We further tested the performance of those coating on various biosensors, such as quartz crystal microbalance, surface plasmon resonance, and protein microarrays. The optimized matrices enhanced the performance of those biosensors. This report shall encourage researches to explore new frontiers in SIP that go beyond polymer brushes.
Resumo:
Surface initiated polymerization (SIP) is a valuable tool in synthesizing functional polymer brushes, yet the kinetic understanding of SIP lags behind the development of its application. We apply quartz crystal microbalance (QCM) to address two issues that are not fully addressed yet play a central role in the rational design of functional polymer brushes, namely quantitative determination of the kinetics and the initiator efficiency (IE) of SIP. SIP are monitored online using QCM. Two quantitative frequency-thickness (f-T) relations make the direct determination and comparison of the rate of polymerization possible even for different monomers. Based on the bi-termination model, the kinetics of SIP is simply described by two variables, which are related to two polymerization constants, namely a = 1/(k (p,s,app)-[M][R center dot](0)) and b = k (t,s,app)/(k (p,s,app)[M]). Factors that could alter the kinetics of SIP are studied, including (i) the molecular weight of monomers, (ii) the solvent used, (iii) the initial density of the initiator, (iv) the concentration of monomer, [M], and (v) the catalyst system (ratio among the ingredients, metal, ligands, and additives). The dynamic nature of IE is also described by these two variables, IE = a/(a + bt). Instead of the molecular weight and the polydispersity, we suggest that film thickness, the two kinetic parameters (a and b), and the initial density of the initiator and IE be the parameters that characterize ultra-thin polymer brushes. Besides the kinetics study of SIP, the reported method has many other applications, for example, in the fast screening of catalyst system for SIP and other polymerization systems.
Resumo:
The construction and commissioning of HIRFL-CSR were finished in 2007. From 2000 to 2005 the subsystem and key devices of CSR were successfully fabricated, such as magnet, power supply, UHV system, e-cooler, electric-static deflector with the septum of 0.1 mm, and the fast-pulse kicker with the rise time of 150 ns. After that the CSR commissioning activities were performed in 2006 and 2007, including the accumulation of those heavy ions of C, Ar, Kr and Xe by the combination of stripping injection (STI) or multiple multi-turn injection (MMI) and e-cooling with a hollow e-beam, wide energy-range synchrotron ramping by changing the RF harmonic-number at mid-energy, the beam stacking in the experimental ring CSRe, the RIBs mass-measurement with the isochronous-mode in CSRe by using the time-of-flight method, and the ion beam slow-extraction from CSRm.
Resumo:
Nanoparticles of BaLiF3:Er3+ were prepared from the quaternary microemulsions of Cetyltrim-Enthyl Ammonium Bromide (CTAB), n-butanol, n-octane, and water, using the hydrothermal-microemulsion technique. The complex fluorides were characterized by means of X-ray power diffraction, Environmental Scanning Electron Microscopy (ESEM), and fluorescence spectra.
Resumo:
A series of novel titanium(IV) complexes combining a phosphine oxide-bridged bisphenolato ligand TiCl2{2,2'-O=P-R-3 (4-R-2-6-R-1-C6H2O)(2)}(THF) (6a: R-1 = tBu, R-2 - H, R-3 Ph; 6b: R-1 - Ph, R-2 = H, R-3 = Ph; 6c: R-1 = R-2 = tBu, R-3 = Ph; 6d: R-1 = R-2 cumyl, R-3 = Ph; 6e: R-1 = tBu, R-2 = H, R-3 = PhF5) were prepared by the reaction of corresponding bisphenolato ligands with TiCl4 in THF. X-ray analysis reveals that complex 6a adopts distorted octahedral geometry around the titanium center. These catalysts were performed for ethylene polymerization in the presence of modified methyaluminoxane (MMAO).
Resumo:
A ruthenium(II) bis(sigma-arylacetylide)-complex-based molecular wire functionalized with thiolacetyl alligator clips at both ends (OPERu) was used to fabricate gold substrate-molecular wire-conductive tip junctions. To elucidate the ruthenium-complex-enhanced charge transport, we conducted a single-molecule level investigation using the technique-combination method, where electronic delay constant, single-molecular conductance, and barrier height were obtained by scanning tunneling microscopy (STM) apparent height measurements, STM break junction measurements, and conductive probe-atomic force microscopy (CP-AFM) measurements, respectively.
Resumo:
A novel periodic mesoporous organosilica (PMO) material was synthesized through one-step co-condensation of 1,2-bis(triethoxysilyl)ethane (BTESE) and benzoic acid-functionalized organosilane (BA-Si) using cetyltrimethylammonium bromide (CTAB) as a structure-directing agent under basic conditions. The materials were fully characterized by FTIR, XRD, N-2 adsorption-desorption isotherms and FESEM. FTIR spectra proved that BA-Si was successfully incorporated into the PMO materials (PMOs) via benzyl group as a linker. XRD and N-2 adsorption-desorption isotherms revealed the characteristic mesoporous structure with highly uniform pore size distributions. FESEM confirmed that the morphology of the PMOs was significantly dependent cri the molar ratio of two organosilica precursors.
Resumo:
Fe(III), Cr(III), Fe(II), Co(II) and Ni(II) chloride complexes supported by 2,6-bis[1-(iminophenyl)ethyl]pyridine have been synthesized and characterized along with single crystal X-ray diffraction. These complexes, in combination with MAO, have been examined in butadiene polymerization. The catalytic activity and regioselectivity are strongly controlled by metal center and cocatalyst (MAO/Co ratio dependent in the case of Co(II) complex). The activity decreases in the order of Fe(III) > Co(II) > Cr(III) approximate to Ni (II) complexes, in consistent with the space around the metal center. Polybutadiene with different microstructure content, from high trans-1,4 units (88-95% for iron(III) and Cr(III)), medium trans-1,4 and cis-1,4 units (55% and 35%, respectively, for iron(II)) to high cis-1,4 units 79% for Co(II) and 97% for Ni(II) call be easily achieved by varying of the metal center.
Resumo:
A new method for quantitative analysis of lactide has been developed by applying chemical kinetics to a HPLC system. The most important advance is its practical approach to the quantification of analytes that are unstable in the HPLC mobile phase. In HPLC analysis, anhydrous mobile phases cannot separate lactide from impurities, and only mixtures of water and organic solvent can achieve effective separation. By selecting conditions for testing and studying the kinetics of lactide hydrolysis, extensive experiments revealed that lactide degradation can be treated as a pseudo-first-order reaction under the given HPLC conditions, and lactide content or purity can be quantitatively determined. This method is practical for measuring the purity of the intermediate lactide in polylactic acid (PLA) production and the lactide content in PLA.
Resumo:
Cobalt 2,4-dinitrophenolate (complex 1) based upon a N,N,O,O-tetradentate Schiff base ligand framework was prepared. X-ray diffraction analysis confirmed that complex 1 was triclinic species with a six-coordinated central cobalt octahedron in the solid. Asymmetric alternating copolymerization of carbon dioxide (CO2) with racemic propylene oxide (rac-PO) proceeded effectively by complex 1 in conjunction with (4-dimethylamino)pyridine (DMAP), yielding a perfectly alternating and bimodal molecular weight distribution PO/CO2 poly(propylene carbonate) (PPC) with a small amount of cyclic carbonate byproducts.
Resumo:
The nano-scale luminescent complex of Terbium(III)-trimesic acid (TMA)-1,10-phenanthroline(phen) was successfully synthesized by co-precipitation method in this paper. The chemical formula of the synthesized complex was speculated to be Tb(TMA)(phen)(0.0125)center dot 5H(2)O by elemental analysis, inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and Fourier-transform infrared spectroscopy (FTIR). XRD pattern of Tb(TMA)(phen)(0.0125)center dot 5H(2)O indicated that it was a new crystalline complex since the diffraction angle, diffraction intensity and the distance of crystal plane were all different from those of the two ligands. TG curve proved that the synthesized nano-scale luminescent complex was stable in the range from ambient temperature to 464 degrees C in air. TEM images showed that the complex was spherical shape with an average size of 40 nm.
Resumo:
Deprotonation of (ArNHPPh2NAr2)-N-1 (H[NPN](n), n = 1 - 10) by Ln(CH2SiMe3)(3)(THF)(2) (Ln = Lu, Y, Sc, Er) generated a series of rare-earth metal bis(alkyl) complexes [NPN](n)Ln(CH2SiMe3)(2)(THF)(2) (1-10), which under activation with [Ph3C][B(C6F5)(4)] and AliBu(3) were tested for isoprene polymerization. The correlation between catalytic performances and molecular structures of the complexes has been investigated. Complexes 1-5 and 8, where Ar-1 is nonsubstituted or ortho-alkyl-substituted phenyl, adopt trigonal-bipyramidal geometry. The Ar-1 and Ar-2 rings are perpendicular in 1-4 and 8 but parallel in 5. When Ar-1 is pyridyl, the resultant lutetium and yttrium complexes 9a and 9b adopt tetragonal geometry with the ligand coordinating to the metal ions in a N,N,N-tridentate mode, whereas in the scandium analogue 9c, the ligand coordinates to the Sc3+ ion in a N,N-bidentate mode. These structural characteristics endow the complexes with versatile catalytic performances, With increase of the steric bulkiness of the ortho-substituents Ar-1 and Ar-2, the 3,4-selectivity increased stepwise from 81.6% for lutetium complex 1 to 96.8% for lutetium complex 6 and to 97.8% for lutetium complex 7a. However, further increase of the steric bulk of the ligand led to a slight drop of 3,4-selectivity for the attached complex 5 (95.1%).
Resumo:
A series of novel neutral nickel complexes 4a-e bearing modified beta-ketoiminato ligands [(2,6-(Pr2C6H3)-Pr-i)N=C(R-1)CHC(2 '-R2C6H4)O]Ni(Ph)(PPh3) (4a, R-1 R-2 = H; 4b, R-1 = H, R-2 = Ph; 4c, R-1 = H, R-2 = Naphth; 4d, R-1 = CH3, R-2 = Ph; 4e, R-1 = CF3, R-2 Ph) have been synthesized and characterized. Molecular structures of 4b and 4e were further confirmed by X-ray crystallographic analysis. Activated with B(C6F5)(3), all the complexes are active for the polymerization of ethylene to branched polyethylenes. Ligand structure, i.e., substituents R-1 and R-2, greatly influences not only catalytic activity but also the molecular weight and branch content of the polyethylene produced. The phenyl-substituted complex 4b exhibits the highest activity of lip to 145 kg PE/mol(Ni)center dot h center dot atm under optimized conditions, which is about 10 times more than unsubstituted complex 4a (14.0 kg PE/mol(Ni center dot)h center dot atm). Highly branched polyethylene with 103 branches per 1000 carbon atoms has been prepared using catalyst 4e.
Resumo:
A series of amino-pyrrolide ligands (1-4a) and their derivatives aminothiophene ligand (5a), amino-indole ligand (6a) were prepared. Chromium catalysts, which were generated in situ by mixing the ligands with CrCl3(thf)(3) in toluene, were tested for ethylene polymerization. The preliminary screening results revealed that the tridentate amino-pyrrolide ligands containing soft pendant donor, 3a, 4a/CrCl3(thf)(3) systems displayed high catalytic activities towards ethylene polymerization in the presence of modified methyaluminoxane. The electronic and steric factors attached to the ligand backbone significantly affected both the catalyst activity and the polymer molecular weight. Complex 4b was obtained by the reaction of CrCl3(thf)(3) with one equivalent of the lithium salts of 4a, which was the most efficient ligand among the tested ones. The effect of polymerization parameters such as cocatalyst concentration, ethylene pressure, reaction temperature, and time on polymerization behavior were investigated in detail. The resulting polymer obtained by 4b display wax-like and possess linear structure, low molecular weight, and unimodal distribution.