986 resultados para acute pulmonary embolism
Resumo:
Thrombophilia stands for a genetic or an acquired tendency to hypercoagulable states that increase the risk of venous and arterial thromboses. Indeed, venous thromboembolism is often a chronic illness, mainly in deep venous thrombosis and pulmonary embolism, requiring lifelong prevention strategies. Therefore, it is crucial to identify the cause of the disease, the most appropriate treatment, the length of treatment or prevent a thrombotic recurrence. Thus, this work will focus on the development of a diagnosis decision support system in terms of a formal agenda built on a logic programming approach to knowledge representation and reasoning, complemented with a case-based approach to computing. The proposed model has been quite accurate in the assessment of thrombophilia predisposition risk, since the overall accuracy is higher than 90% and sensitivity ranging in the interval [86.5%, 88.1%]. The main strength of the proposed solution is the ability to deal explicitly with incomplete, unknown, or even self-contradictory information.
Resumo:
We report a case of a 78-year-old female with a proximal femur fracture caused by an accidental fall who died suddenly 1h after orthopaedic prosthesis insertion. Post-mortem computed tomography (CT) scan and histological examination of samples obtained with post-mortem percutaneous needle biopsies of both lungs were performed. Analysis of the medical history and the clinical scenario immediately before death, imaging data, and biopsy histology established the cause of death without proceeding to traditional autopsy. It was determined to be acute right ventricular failure caused by massive pulmonary fat embolism. Although further research in post-mortem imaging and post-mortem tissue sampling by needle biopsies is necessary, we conclude that the use of CT techniques and percutaneous biopsy, as additional tools, can offer a viable alternative to traditional autopsy in selected cases and may increase the number of minimally invasive forensic examinations performed in the future.
Resumo:
Objective: To investigate the effects of low and high levels of positive end-expiratory pressure (PEEP), without recruitment maneuvers, during lung protective ventilation in an experimental model of acute lung injury (ALI). Design: Prospective, randomized, and controlled experimental study. Setting: University research laboratory. Subjects: Wistar rats were randomly assigned to control (C) [saline (0.1 ml), intraperitoneally] and ALI [paraquat (15 mg/kg), intra peritoneally] groups. Measurements and Main Results: After 24 hours, each group was further randomized into four groups (six rats each) at different PEEP levels = 1.5, 3, 4.5, or 6 cm H(2)O and ventilated with a constant tidal volume (6 mL/kg) and open thorax. Lung mechanics [static elastance (Est, L) and viscoelastic pressure (Delta P2, L)] and arterial blood gases were measured before (Pre) and at the end of 1-hour mechanical ventilation (Post). Pulmonary histology (light and electron microscopy) and type III procollagen (PCIII) messenger RNA (mRNA) expression were measured after 1 hour of mechanical ventilation. In ALI group, low and high PEEP levels induced a greater percentage of increase in Est, L (44% and 50%) and Delta P2, L (56% and 36%) in Post values related to Pre. Low PEEP yielded alveolar collapse whereas high PEEP caused overdistension and atelectasis, with both levels worsening oxygenation and increasing PCIII mRNA expression. Conclusions: In the present nonrecruited ALI model, protective mechanical ventilation with lower and higher PEEP levels than required for better oxygenation increased Est, L and Delta P2, L, the amount of atelectasis, and PCIII mRNA expression. PEEP selection titrated for a minimum elastance and maximum oxygenation may prevent lung injury while deviation from these settings may be harmful. (Crit Care Med 2009; 37:1011-1017)
Resumo:
Objective: Gorticosteroids have been proposed to be effective in modulating the inflammatory response and pulmonary tissue remodeling in acute lung injury (ALI). We hypothesized that steroid treatment might act differently in models of pulmonary (p) or extrapulmonary (exp) ALI with similar mechanical compromise. Design: Prospective, randomized, controlled experimental study. Setting: University research laboratory. Subjects: One hundred twenty-eight BALB/c mice (20-25 g). Interventions: Mice were divided into six groups. In control animals sterile saline solution was intratracheally (0.05 mL, Cp) or intraperitoneally (0.5 mL, Gexp) injected, whereas ALI animals received Escherichia coli lipopolysaccharide intratracheally (10 mu g, ALIp) or intraperitoneally (125 mu g, ALIexp). Six hours after lipopolysaccharide administration, ALIp and ALlexp animals were further randomized into subgroups receiving saline (0.1 mL intravenously) or methylprednisolone (2 mg/kg intravenously, Mp and Mexp, respectively). Measurements and Main Results: At 24 hrs, lung state elastance, resistive and viscoelastic pressures, lung morphometry, and collagen fiber content were similar in both ALI groups. KC, interieukin-6, and transforming growth factor (TGF)-beta levels in bronchoatveolar lavage fluid, as well as tumor necrosis factor (TNF)-alpha, migration inhibitory factor (MIF), interferon (IFN)-gamma, TGF-beta 1 and TGF-beta 2 messenger RNA expression in lung tissue were higher in ALIp than in ALIexp animals. Methylprednisolone attenuated mechanical and morphometric changes, cytokine levels, and TNF-alpha, MIF, IFN gamma, and TGF-beta 2 messenger RNA expression only in ALIp animals, but prevented any changes in collagen fiber content in both ALI groups. Conclusions. Methylprednisolone is effective to inhibit fibrogenesis independent of the etiology of ALI, but its ability to attenuate inflammatory responses and lung mechanical changes varies according to the cause of ALI.
Resumo:
Objective. The aim of this study is to test the hypothesis that recruitment maneuvers (RMs) might act differently in models of pulmonary (p) and extrapulmonary (exp) acute lung injury (ALI) with similar transpulmonary pressure changes. Design: Prospective, randomized, controlled experimental study. Setting. University research laboratory. Subjects: Wistar rats were randomly divided into four groups. In control groups, sterile saline solution was intratracheally (0.1 mL, Cp) or intraperitoneally (1 mL, Cexp) injected, whereas ALI animals received Escherichia coli lipopolysaccharide intratracheally (100 jig, ALIp) or intraperitoneally (1 mg, ALIexp). After 24 hrs, animals were mechanically ventilated (tidal volume, 6 mL/kg; positive end-expiratory pressure, 5 cm H2O) and three RMs (pressure inflations to 40 cm H2O for 40 secs, 1 min apart) applied. Measurements and Main Results. Pao(2), lung resistive and viscoelastic pressures, static elastance, lung histology (light and electron microscopy), and type III procollagen messenger RNA expression in pulmonary tissue were measured before RMs and at the end of 1 hr of mechanical ventilation. Mechanical variables, gas exchange, and the fraction of area of alveolar collapse were similar in both ALI groups. After RMs, lung resistive and viscoelastic pressures and static elastance decreased more in ALIexp (255%,180%, and 118%, respectively) than in ALIp (103%, 59%, and 89%, respectively). The amount of atelectasis decreased more in ALIexp than in ALIp (from 58% to 19% and from 59% to 33%, respectively). RMs augmented type III procollagen messenger RNA expression only in the ALIp group (19%), associated with worsening in alveolar epithelium injury but no capillary endothelium lesion, whereas the ALIexp group showed a minor detachment of the alveolar capillary membrane. Conclusions. Given the same transpulmonary pressures, RMs are more effective at opening collapsed alveoli in ALIexp than in ALIp, thus improving lung mechanics and oxygenation with limited damage to alveolar epithelium.
Resumo:
Air pollution is associated with morbidity and mortality induced by respiratory diseases. However, the mechanisms therein involved are not yet fully clarified. Thus, we tested the hypothesis that a single acute exposure to low doses of fine particulate matter (PM2.5) may induce functional and histological lung changes and unchain inflammatory and oxidative stress processes. PM2.5 was collected from the urban area of Sao Paulo city during 24 h and underwent analysis for elements and polycyclic aromatic hydrocarbon contents. Forty-six male BALB/c mice received intranasal instillation of 30 mu L of saline (CTRL) or PM2.5 at 5 or 15 mu g in 30 mu L of saline (P5 and P15, respectively). Twenty-four hours later, lung mechanics were determined. Lungs were then prepared for histological and biochemical analysis. P15 group showed significantly increased lung impedance and alveolar collapse, as well as lung tissue inflammation, oxidative stress and damage. P5 presented values between CTRL and P15: higher mechanical impedance and inflammation than CTRL, but lower inflammation and oxidative stress than P15. In conclusion, acute exposure to low doses of fine PM induced lung inflammation, oxidative stress and worsened lung impedance and histology in a dose-dependent pattern in mice.
Resumo:
Along the aluminum refining process, alumina (Al(2)O(3)) constitutes the main source of dust. Although aluminum refinery workers present respiratory symptoms with lung functional changes, no conclusive data about lung function impairment after alumina exposure has been so far reported. We examined the pulmonary alterations of exposure to material collected in an aluminum refinery in Brazil. BALB/c mice were exposed in a whole-body chamber for 1 h to either saline (CTRL, n = 11) or to a suspension (in saline) of 8 mg/m(3) of the dust (ALUM, n = 11) both delivered by an ultrasonic nebulizer. Twenty-four hours after exposure lung mechanics were measured by the end-inflation method. Lungs were prepared for histology. ALUM showed significantly higher static elastance (34.61 +/- 5.76 cmH(2)O/mL), elastic component of viscoelasticity (8.16 +/- 1.20 cmH(2)O/mL), pressure used to overcome the resistive component of viscoelasticity (1.62 +/- 0.24 cmH(2)O), and total resistive pressure (2.21 +/- 0.49 cmH(2)O) than CTRL (27.95 +/- 3.63 cmH(2)O/mL, 6.12 +/- 0.99 cmH(2)O/mL, 1.23 +/- 0.19 cmH(2)O, and 1.68 +/- 0.23 cmH(2)O, respectively). ALUM also presented significantly higher fraction area of alveolar collapse (69.7 +/- 1.2%) and influx of polymorphonuclear cells (27.5 +/- 1.1%) in lung parenchyma than CTRL (27.2 +/- 1.1% and 14.6 +/- 0.7%, respectively). The composition analysis of the particulate matter showed high concentrations of aluminum. For the first time it was demonstrated in an experimental model that an acute exposure to dust collected in an aluminum producing facility impaired lung mechanics that could be associated with inflammation.
Resumo:
Background: Magnesium (Mg) use has the potential to promote bronchodilatation and to improve lung function in obstructive diseases. IV administration of Mg during exacerbations of chronic obstructive pulmonary disease (COPD) has led to improved peak flow. This study aimed to investigate the effects of acute IV Mg loading on respiratory parameters of stable COPD patients. Material/Methods: This was a randomized, double-blind, placebo-controlled crossover study. Twenty-two male COPD patients (64 +/- 6 years old, FEV1: 49 +/- 20%) received an IV infusion of 2 g of magnesium sulfate or placebo on two distinct occasions. Spirometry and mouth maximal respiratory pressures were obtained before and 45 minutes after the infusions. Results: Mg use led to significant changes in functional respiratory capacity (-0.48 1,95% CI: -0.96, -0.01), inspiratory capacity (0.21 1,95% CI: 0.04, 0.37). The treatment was also associated with a marginally significant decrease in residual volume (-0.47 1,95% CI: -0.96, 0.02, p=0.06). Conclusions: Acute IV Mg loading in stable COPD patients was associated with a reduction in lung hyperinflation and improvement of respiratory muscle strength. The clinical potential for chronic magnesium supplementation in COPD deserves further investigation.
Resumo:
This trial compared the cost of an integrated home-based care model with traditional inpatient care for acute chronic obstructive pulmonary disease (COPD). 25 patients with acute COPD were randomised to either home or hospital management following request for hospital admission. The acute care at home group costs per separation ($745, CI95% $595-$895, n = 13) were significantly lower (p < 0.01) than the hospital group ($2543, CI95% $1766-$3321, n = 12). There was an improvement in lung function in the hospital-managed group at the Outpatient Department review, decreased anxiety in the Emergency Department in the home-managed group and equal patient satisfaction with care delivery. Acute care at home schemes can substitute for usual hospital care for some patients without adverse effects, and potentially release resources. A funding model that allows adequate resource delivery to the community will be needed if there is a move to devolve acute care to community providers.
Resumo:
The effects of S-nitrosocaptopril (SNOcap), administered either intravenously or by oral gavage, on pulmonary artery pressure (PAP) were examined in anaesthetised normotensive rats and rats with hypoxic pulmonary hypertension (10% oxygen for 1 week). Mean PAP (MPAP) values in hypoxic and normoxic rats were (mmHg) 26 +/- 1.7 and 15 +/- 1.1, respectively. When given intravenously, 1 mg kg(-1) SNOcap reduced MPAP by 28 and 32% in hypoxic and normoxic rats, respectively. The effects of 2 mg kg(-1) were no greater than those of 1 mg kg(-1). Pulmonary vasoclepressor responses reached equilibrium in 1.7 +/- 0.18 min following intravenous administration. When given orally 30 min before the measurement of PAP, 30 mg kg(-1), but not 10 mg kg(-1), significantly reduced MPAP in hypoxic rats to 17 +/- 1.5 mmHg. These in-vivo data are consistent with previous in-vitro data showing that SNOcap has direct pulmonary vasorelaxant properties in both large and small pulmonary arteries and also show that SNOcap causes pulmonary vasodepression in the setting of pulmonary hypertension. Since SNOcap also inhibits pulmonary vascular angiotensin converting enzyme (ACE) in pulmonary blood vessels (previous study), it would be an interesting drug with which to assess the benefits of direct pulmonary vasodilatation combined with ACE inhibition (which attentuates pulmonary vascular remodelling) in a long-term study in pulmonary hypertension.
Resumo:
Dry cough, dyspnea and manifestations of bronchial asthma have recently been observed in patients with acute schistosomiasis. To investigate the type and pathogenesis of these conditions, an experimental mouse model for acute schistosomiasis was used. Forty mice were divided into four groups of ten each: three infected groups and a non-infected control group. The animals were examined 7, 28-35 and 40 days after exposure to cercariae. During the acute phase of the infection (28-35 days), a process of multifocal interstitial pneumonitis involving the peribronchial, peribronchiolar and subpleural tissues was found. This process was not seen during the other phases of the infection. Indirect immunofluorescence failed to demonstrate the presence of schistosomal antigens in the acute-phase lesions. The pneumonitis was attributed to products (inflammatory mediators) from acute-phase periovular necrotic-inflammatory lesions in the liver that were transported to the lungs by the bloodstream.