865 resultados para Two-stage stochastic model
Resumo:
Computer vision is an attractive solution for uninhabited aerial vehicle (UAV) collision avoidance, due to the low weight, size and power requirements of hardware. A two-stage paradigm has emerged in the literature for detection and tracking of dim targets in images, comprising of spatial preprocessing, followed by temporal filtering. In this paper, we investigate a hidden Markov model (HMM) based temporal filtering approach. Specifically, we propose an adaptive HMM filter, in which the variance of model parameters is refined as the quality of the target estimate improves. Filters with high variance (fat filters) are used for target acquisition, and filters with low variance (thin filters) are used for target tracking. The adaptive filter is tested in simulation and with real data (video of a collision-course aircraft). Our test results demonstrate that our adaptive filtering approach has improved tracking performance, and provides an estimate of target heading not present in previous HMM filtering approaches.
Resumo:
The research objectives of this thesis were to contribute to Bayesian statistical methodology by contributing to risk assessment statistical methodology, and to spatial and spatio-temporal methodology, by modelling error structures using complex hierarchical models. Specifically, I hoped to consider two applied areas, and use these applications as a springboard for developing new statistical methods as well as undertaking analyses which might give answers to particular applied questions. Thus, this thesis considers a series of models, firstly in the context of risk assessments for recycled water, and secondly in the context of water usage by crops. The research objective was to model error structures using hierarchical models in two problems, namely risk assessment analyses for wastewater, and secondly, in a four dimensional dataset, assessing differences between cropping systems over time and over three spatial dimensions. The aim was to use the simplicity and insight afforded by Bayesian networks to develop appropriate models for risk scenarios, and again to use Bayesian hierarchical models to explore the necessarily complex modelling of four dimensional agricultural data. The specific objectives of the research were to develop a method for the calculation of credible intervals for the point estimates of Bayesian networks; to develop a model structure to incorporate all the experimental uncertainty associated with various constants thereby allowing the calculation of more credible credible intervals for a risk assessment; to model a single day’s data from the agricultural dataset which satisfactorily captured the complexities of the data; to build a model for several days’ data, in order to consider how the full data might be modelled; and finally to build a model for the full four dimensional dataset and to consider the timevarying nature of the contrast of interest, having satisfactorily accounted for possible spatial and temporal autocorrelations. This work forms five papers, two of which have been published, with two submitted, and the final paper still in draft. The first two objectives were met by recasting the risk assessments as directed, acyclic graphs (DAGs). In the first case, we elicited uncertainty for the conditional probabilities needed by the Bayesian net, incorporated these into a corresponding DAG, and used Markov chain Monte Carlo (MCMC) to find credible intervals, for all the scenarios and outcomes of interest. In the second case, we incorporated the experimental data underlying the risk assessment constants into the DAG, and also treated some of that data as needing to be modelled as an ‘errors-invariables’ problem [Fuller, 1987]. This illustrated a simple method for the incorporation of experimental error into risk assessments. In considering one day of the three-dimensional agricultural data, it became clear that geostatistical models or conditional autoregressive (CAR) models over the three dimensions were not the best way to approach the data. Instead CAR models are used with neighbours only in the same depth layer. This gave flexibility to the model, allowing both the spatially structured and non-structured variances to differ at all depths. We call this model the CAR layered model. Given the experimental design, the fixed part of the model could have been modelled as a set of means by treatment and by depth, but doing so allows little insight into how the treatment effects vary with depth. Hence, a number of essentially non-parametric approaches were taken to see the effects of depth on treatment, with the model of choice incorporating an errors-in-variables approach for depth in addition to a non-parametric smooth. The statistical contribution here was the introduction of the CAR layered model, the applied contribution the analysis of moisture over depth and estimation of the contrast of interest together with its credible intervals. These models were fitted using WinBUGS [Lunn et al., 2000]. The work in the fifth paper deals with the fact that with large datasets, the use of WinBUGS becomes more problematic because of its highly correlated term by term updating. In this work, we introduce a Gibbs sampler with block updating for the CAR layered model. The Gibbs sampler was implemented by Chris Strickland using pyMCMC [Strickland, 2010]. This framework is then used to consider five days data, and we show that moisture in the soil for all the various treatments reaches levels particular to each treatment at a depth of 200 cm and thereafter stays constant, albeit with increasing variances with depth. In an analysis across three spatial dimensions and across time, there are many interactions of time and the spatial dimensions to be considered. Hence, we chose to use a daily model and to repeat the analysis at all time points, effectively creating an interaction model of time by the daily model. Such an approach allows great flexibility. However, this approach does not allow insight into the way in which the parameter of interest varies over time. Hence, a two-stage approach was also used, with estimates from the first-stage being analysed as a set of time series. We see this spatio-temporal interaction model as being a useful approach to data measured across three spatial dimensions and time, since it does not assume additivity of the random spatial or temporal effects.
Resumo:
The growth of solid tumours beyond a critical size is dependent upon angiogenesis, the formation of new blood vessels from an existing vasculature. Tumours may remain dormant at microscopic sizes for some years before switching to a mode in which growth of a supportive vasculature is initiated. The new blood vessels supply nutrients, oxygen, and access to routes by which tumour cells may travel to other sites within the host (metastasize). In recent decades an abundance of biological research has focused on tumour-induced angiogenesis in the hope that treatments targeted at the vasculature may result in a stabilisation or regression of the disease: a tantalizing prospect. The complex and fascinating process of angiogenesis has also attracted the interest of researchers in the field of mathematical biology, a discipline that is, for mathematics, relatively new. The challenge in mathematical biology is to produce a model that captures the essential elements and critical dependencies of a biological system. Such a model may ultimately be used as a predictive tool. In this thesis we examine a number of aspects of tumour-induced angiogenesis, focusing on growth of the neovasculature external to the tumour. Firstly we present a one-dimensional continuum model of tumour-induced angiogenesis in which elements of the immune system or other tumour-cytotoxins are delivered via the newly formed vessels. This model, based on observations from experiments by Judah Folkman et al., is able to show regression of the tumour for some parameter regimes. The modelling highlights a number of interesting aspects of the process that may be characterised further in the laboratory. The next model we present examines the initiation positions of blood vessel sprouts on an existing vessel, in a two-dimensional domain. This model hypothesises that a simple feedback inhibition mechanism may be used to describe the spacing of these sprouts with the inhibitor being produced by breakdown of the existing vessel's basement membrane. Finally, we have developed a stochastic model of blood vessel growth and anastomosis in three dimensions. The model has been implemented in C++, includes an openGL interface, and uses a novel algorithm for calculating proximity of the line segments representing a growing vessel. This choice of programming language and graphics interface allows for near-simultaneous calculation and visualisation of blood vessel networks using a contemporary personal computer. In addition the visualised results may be transformed interactively, and drop-down menus facilitate changes in the parameter values. Visualisation of results is of vital importance in the communication of mathematical information to a wide audience, and we aim to incorporate this philosophy in the thesis. As biological research further uncovers the intriguing processes involved in tumourinduced angiogenesis, we conclude with a comment from mathematical biologist Jim Murray, Mathematical biology is : : : the most exciting modern application of mathematics.
The association between objectively measured neighborhood features and walking in middle-aged adults
Resumo:
Purpose: To explore the role of the neighborhood environment in supporting walking Design: Cross sectional study of 10,286 residents of 200 neighborhoods. Participants were selected using a stratified two-stage cluster design. Data were collected by mail survey (68.5% response rate). Setting: The Brisbane City Local Government Area, Australia, 2007. Subjects: Brisbane residents aged 40 to 65 years. Measures Environmental: street connectivity, residential density, hilliness, tree coverage, bikeways, and street lights within a one kilometer circular buffer from each resident’s home; and network distance to nearest river or coast, public transport, shop, and park. Walking: minutes in the previous week categorized as < 30 minutes, ≥ 30 < 90 minutes, ≥ 90 < 150 minutes, ≥ 150 < 300 minutes, and ≥ 300 minutes. Analysis: The association between each neighborhood characteristic and walking was examined using multilevel multinomial logistic regression and the model parameters were estimated using Markov chain Monte Carlo simulation. Results: After adjustment for individual factors, the likelihood of walking for more than 300 minutes (relative to <30 minutes) was highest in areas with the most connectivity (OR=1.93, 99% CI 1.32-2.80), the greatest residential density (OR=1.47, 99% CI 1.02-2.12), the least tree coverage (OR=1.69, 99% CI 1.13-2.51), the most bikeways (OR=1.60, 99% CI 1.16-2.21), and the most street lights (OR=1.50, 99% CI 1.07-2.11). The likelihood of walking for more than 300 minutes was also higher among those who lived closest to a river or the coast (OR=2.06, 99% CI 1.41-3.02). Conclusion: The likelihood of meeting (and exceeding) physical activity recommendations on the basis of walking was higher in neighborhoods with greater street connectivity and residential density, more street lights and bikeways, closer proximity to waterways, and less tree coverage. Interventions targeting these neighborhood characteristics may lead to improved environmental quality as well as lower rates of overweight and obesity and associated chromic disease.
Resumo:
This book provides the much needed international dimension on the payoffs of information technology investments. The bulk of the research on the impact of information technology investments has been undertaken in developed economies, mainly the United States. This research provides an alternative dimension - a developing country perspective on how information technology investments impacts organizations. Secondly, there has been much debate and controversy on how we measure information technology investment payoffs. This research uses an innovative two-stage model where it proposes that information technology investments will first impact the process and improvement in the processes will then impact the performance. In doing so, it considers sectors of information technology investment rather than taking it as one. Finally, almost all prior studies in this area have considered only the tangible impact of information technology investments. This research proposes that one can only better understand the benefits by looking at both the tangible and intangible benefits.
Resumo:
Extreme cold and heat waves, characterised by a number of cold or hot days in succession, place a strain on people’s cardiovascular and respiratory systems. The increase in deaths due to these waves may be greater than that predicted by extreme temperatures alone. We examined cold and heat waves in 99 US cities for 14 years (1987–2000) and investigated how the risk of death depended on the temperature threshold used to define a wave, and a wave’s timing, duration and intensity. We defined cold and heat waves using temperatures above and below cold and heat thresholds for two or more days. We tried five cold thresholds using the first to fifth percentiles of temperature, and five heat thresholds using the ninety-fifth to ninety-ninth percentiles. The extra wave effects were estimated using a two-stage model to ensure that their effects were estimated after removing the general effects of temperature. The increases in deaths associated with cold waves were generally small and not statistically significant, and there was even evidence of a decreased risk during the coldest waves. Heat waves generally increased the risk of death, particularly for the hottest heat threshold. Cold waves of a colder intensity or longer duration were not more dangerous. Cold waves earlier in the cool season were more dangerous, as were heat waves earlier in the warm season. In general there was no increased risk of death during cold waves above the known increased risk associated with cold temperatures. Cold or heat waves earlier in the cool or warm season may be more dangerous because of a build up in the susceptible pool or a lack of preparedness for cold or hot temperatures.
Resumo:
Carrion-breeding Sarcophagidae (Diptera) can be used to estimate the post-mortem interval (PMI) in forensic cases. Difficulties with accurate morphological identifications at any life stage and a lack of documented thermobiological profiles have limited their current usefulness of these flies. The molecular-based approach of DNA barcoding, which utilises a 648-bp fragment of the mitochondrial cytochrome oxidase subunit I gene, was previously evaluated in a pilot study for the discrimination between 16 Australian sarcophagids. The current study comprehensively evaluated DNA barcoding on a larger taxon set of 588 adult Australian sarcophagids. A total of 39 of the 84 known Australian species were represented by 580 specimens, which includes 92% of potentially forensically important species. A further eight specimens could not be reliably identified, but included as six unidentifable taxa. A neighbour-joining phylogenetic tree was generated and nucleotide sequence divergences were calculated using the Kimura-two-parameter distance model. All species except Sarcophaga (Fergusonimyia) bancroftorum, known for high morphological variability, were resolved as reciprocally monophyletic (99.2% of cases), with most having bootstrap support of 100. Excluding S. bancroftorum, the mean intraspecific and interspecific variation ranged from 0.00-1.12% and 2.81-11.23%, respectively, allowing for species discrimination. DNA barcoding was therefore validated as a suitable method for the molecular identification of the Australian Sarcophagidae, which will aid in the implementation of this fauna in forensic entomology.
Resumo:
Background Predicting protein subnuclear localization is a challenging problem. Some previous works based on non-sequence information including Gene Ontology annotations and kernel fusion have respective limitations. The aim of this work is twofold: one is to propose a novel individual feature extraction method; another is to develop an ensemble method to improve prediction performance using comprehensive information represented in the form of high dimensional feature vector obtained by 11 feature extraction methods. Methodology/Principal Findings A novel two-stage multiclass support vector machine is proposed to predict protein subnuclear localizations. It only considers those feature extraction methods based on amino acid classifications and physicochemical properties. In order to speed up our system, an automatic search method for the kernel parameter is used. The prediction performance of our method is evaluated on four datasets: Lei dataset, multi-localization dataset, SNL9 dataset and a new independent dataset. The overall accuracy of prediction for 6 localizations on Lei dataset is 75.2% and that for 9 localizations on SNL9 dataset is 72.1% in the leave-one-out cross validation, 71.7% for the multi-localization dataset and 69.8% for the new independent dataset, respectively. Comparisons with those existing methods show that our method performs better for both single-localization and multi-localization proteins and achieves more balanced sensitivities and specificities on large-size and small-size subcellular localizations. The overall accuracy improvements are 4.0% and 4.7% for single-localization proteins and 6.5% for multi-localization proteins. The reliability and stability of our classification model are further confirmed by permutation analysis. Conclusions It can be concluded that our method is effective and valuable for predicting protein subnuclear localizations. A web server has been designed to implement the proposed method. It is freely available at http://bioinformatics.awowshop.com/snlpred_page.php.
Resumo:
This report is a technical assessment of the hydrological environment of the southern Moreton Bay islands and follows the terms of reference supplied by the then Queensland Department of Natural Resources and Water. The terms of reference describe stage 1 as a condition assessment and stage 2 as an assessment of the implications of water planning scenarios on future condition. This report is the first stage of a two-stage investigation whose primary purpose is to identify and assess groundwater dependent ecosystems (GDEs) and the groundwater flow regimes necessary to support them. Within this context, the groundwaters themselves are also considered and comment made on their condition. Information provided in this report will inform an amendment to the Logan Basin Water Resource Plan to incorporate the southern Moreton Bay islands. The study area is the water resource plan amendment area, which includes North and South Stradbroke islands and the smaller islands between these and the mainland, including the inhabited smaller rocky islands—namely, Macleay, Russell, Karragarra, Lamb and Coochiemudlo islands. This assessment is largely a desktop study based on existing information, but incorporates some field observations, input from experts in specific areas and community representatives, and the professional experience and knowledge of the authors. This report reviews existing research and information on the southern Moreton Bay area with an emphasis on North Stradbroke Island, as it represents the largest and most regionally significant groundwater resource in southern Moreton Bay. The report provides an assessment of key waterrelated environmental features, their condition and their degree of dependence on groundwater. This report also assesses the condition and status of ecosystems within this region. In addition, the report identifies information gaps, uncertainties and potential impacts; reviews groundwater models that have been developed for North Stradbroke Island; and makes recommendations on monitoring and research needs.
Resumo:
Immigration has played an important role in the historical development of Australia. Thus, it is no surprise that a large body of empirical work has developed, which focuses upon how migrants fare in the land of opportunity. Much of the literature is comparatively recent, i.e. the last ten years or so, encouraged by the advent of public availability of Australian crosssection micro data. Several different aspects of migrant welfare have been addressed, with major emphasis being placed upon earnings and unemployment experience. For recent examples see Haig (1980), Stromback (1984), Chiswick and Miller (1985), Tran-Nam and Nevile (1988) and Beggs and Chapman (1988). The present paper contributes to the literature by providing additional empirical evidence on the native/migrant earnings differential. The data utilised are from the rather neglected Australian Bureau of Statistics, ABS Special Supplementary Survey No.4. 1982, otherwise known as the Family Survey. The paper also examines the importance of distinguishing between the wage and salary sector and the self-employment sector when discussing native/migrant differentials. Separate earnings equations for the two labour market groups are estimated and the native/migrant earnings differential is broken down by employment status. This is a novel application in the Australian context and provides some insight into the earnings of the selfemployed, a group that despite its size (around 20 per cent of the labour force) is frequently ignored by economic research. Most previous empirical research fails to examine the effect of employment status on earnings. Stromback (1984) includes a dummy variable representing self-employment status in an earnings equation estimated over a pooled sample of paid and self-employed workers. The variable is found to be highly significant, which leads Stromback to question the efficacy of including the self-employed in the estimation sample. The suggestion is that part of self-employed earnings represent a return to non-human capital investment, i.e. investments in machinery, buildings etc, the structural determinants of earnings differ significantly from those for paid employees. Tran-Nam and Nevile (1988) deal with differences between paid employees and the selfemployed by deleting the latter from their sample. However, deleting the self-employed from the estimation sample may lead to bias in the OLS estimation method (see Heckman 1979). The desirable properties of OLS are dependent upon estimation on a random sample. Thus, the 'Ran-Nam and Nevile results are likely to suffer from bias unless individuals are randomly allocated between self-employment and paid employment. The current analysis extends Tran-Nam and Nevile (1988) by explicitly treating the choice of paid employment versus self-employment as being endogenously determined. This allows an explicit test for the appropriateness of deleting self-employed workers from the sample. Earnings equations that are corrected for sample selection are estimated for both natives and migrants in the paid employee sector. The Heckman (1979) two-step estimator is employed. The paper is divided into five major sections. The next section presents the econometric model incorporating the specification of the earnings generating process together with an explicit model determining an individual's employment status. In Section 111 the data are described. Section IV draws together the main econometric results of the paper. First, the probit estimates of the labour market status equation are documented. This is followed by presentation and discussion of the Heckman two-stage estimates of the earnings specification for both native and migrant Australians. Separate earnings equations are estimated for paid employees and the self-employed. Section V documents estimates of the nativelmigrant earnings differential for both categories of employees. To aid comparison with earlier work, the Oaxaca decomposition of the earnings differential for paid-employees is carried out for both the simple OLS regression results as well as the parameter estimates corrected for sample selection effects. These differentials are interpreted and compared with previous Australian findings. A short section concludes the paper.
Resumo:
Young novice drivers - that is, drivers aged 16-25 years who are relatively inexperienced in driving on the road and have a novice (Learner, Provisional) driver's licence - have been overrepresented in car crash, injury and fatality statistics around the world for decades. There are numerous persistent characteristics evident in young novice driver crashes, fatalities and offences, including variables relating to the young driver themselves, broader social influences which include their passengers, the car they drive, and when and how they drive, and their risky driving behaviour in particular. Moreover, there are a range of psychosocial factors influencing the behaviour of young novice drivers, including the social influences of parents and peers, and person-related factors such as age-related factors, attitudes, and sensation seeking. Historically, a range of approaches have been developed to manage the risky driving behaviour of young novice drivers. Traditional measures predominantly relying upon education have had limited success in regulating the risky driving behaviour of the young novice driver. In contrast, interventions such as graduated driver licensing (GDL) which acknowledges young novice drivers' limitations - principally pertaining to their chronological and developmental age, and their driving inexperience - have shown to be effective in ameliorating this pervasive public health problem. In practice, GDL is a risk management tool that is designed to reduce driving at risky times (e.g., at night) or in risky driving conditions (e.g., with passengers), while still enabling novice drivers to obtain experience. In this regard, the GDL program in Queensland, Australia, was considerably enhanced in July 2007, and major additions to the program include mandated Learner practice of 100 hours recorded in a logbook, and passenger limits during night driving in the Provisional phase. Road safety researchers have also continued to consider the influential role played by the young driver's psychosocial characteristics, including psychological traits and states. In addition, whilst the majority of road safety user research is epidemiological in nature, contemporary road safety research is increasingly applying psychological and criminological theories. Importantly, such theories not only can guide young novice driver research, they can also inform the development and evaluation of countermeasures targeting their risky driving behaviour. The research is thus designed to explore the self-reported behaviours - and the personal, psychosocial, and structural influences upon the behaviours - of young novice drivers This thesis incorporates three stages of predominantly quantitative research to undertake a comprehensive investigation of the risky driving behaviour of young novices. Risky driving behaviour increases the likelihood of the young novice driver being involved in a crash which may harm themselves or other road users, and deliberate risky driving such as driving in excess of the posted speed limits is the focus of the program of research. The extant literature examining the nature of the risky behaviour of the young novice driver - and the contributing factors for this behaviour - while comprehensive, has not led to the development of a reliable instrument designed specifically to measure the risky behaviour of the young novice driver. Therefore the development and application of such a tool (the Behaviour of Young Novice Drivers Scale, or BYNDS) was foremost in the program of research. In addition to describing the driving behaviours of the young novice, a central theme of this program of research was identifying, describing, and quantifying personal, behavioural, and environmental influences upon young novice driver risky behaviour. Accordingly the 11 papers developed from the three stages of research which comprise this thesis are framed within Bandura's reciprocal determinism model which explicitly considers the reciprocal relationship between the environment, the person, and their behaviour. Stage One comprised the foundation research and operationalised quantitative and qualitative methodologies to finalise the instrument used in Stages Two and Three. The first part of Stage One involved an online survey which was completed by 761 young novice drivers who attended tertiary education institutions across Queensland. A reliable instrument for measuring the risky driving behaviour of young novices was developed (the BYNDS) and is currently being operationalised in young novice driver research in progress at the Centre for Injury Research and Prevention in Philadelphia, USA. In addition, regression analyses revealed that psychological distress influenced risky driving behaviour, and the differential influence of depression, anxiety, sensitivity to punishments and rewards, and sensation seeking propensity were explored. Path model analyses revealed that punishment sensitivity was mediated by anxiety and depression; and the influence of depression, anxiety, reward sensitivity and sensation seeking propensity were moderated by the gender of the driver. Specifically, for males, sensation seeking propensity, depression, and reward sensitivity were predictive of self-reported risky driving, whilst for females anxiety was also influential. In the second part of Stage One, 21 young novice drivers participated in individual and small group interviews. The normative influences of parents, peers, and the Police were explicated. Content analysis supported four themes of influence through punishments, rewards, and the behaviours and attitudes of parents and friends. The Police were also influential upon the risky driving behaviour of young novices. The findings of both parts of Stage One informed the research of Stage Two. Stage Two was a comprehensive investigation of the pre-Licence and Learner experiences, attitudes, and behaviours, of young novice drivers. In this stage, 1170 young novice drivers from across Queensland completed an online or paper survey exploring their experiences, behaviours and attitudes as a pre- and Learner driver. The majority of novices did not drive before they were licensed (pre-Licence driving) or as an unsupervised Learner, submitted accurate logbooks, intended to follow the road rules as a Provisional driver, and reported practicing predominantly at the end of the Learner period. The experience of Learners in the enhanced-GDL program were also examined and compared to those of Learner drivers who progressed through the former-GDL program (data collected previously by Bates, Watson, & King, 2009a). Importantly, current-GDL Learners reported significantly more driving practice and a longer Learner period, less difficulty obtaining practice, and less offence detection and crash involvement than Learners in the former-GDL program. The findings of Stage Two informed the research of Stage Three. Stage Three was a comprehensive exploration of the driving experiences, attitudes and behaviours of young novice drivers during their first six months of Provisional 1 licensure. In this stage, 390 of the 1170 young novice drivers from Stage Two completed another survey, and data collected during Stages Two and Three allowed a longitudinal investigation of self-reported risky driving behaviours, such as GDL-specific and general road rule compliance; risky behaviour such as pre-Licence driving, crash involvement and offence detection; and vehicle ownership, paying attention to Police presence, and punishment avoidance. Whilst the majority of Learner and Provisional drivers reported compliance with GDL-specific and general road rules, 33% of Learners and 50% of Provisional drivers reported speeding by 10-20 km/hr at least occasionally. Twelve percent of Learner drivers reported pre-Licence driving, and these drivers were significantly more risky as Learner and Provisional drivers. Ten percent of males and females reported being involved in a crash, and 10% of females and 18% of males had been detected for an offence, within the first six months of independent driving. Additionally, 75% of young novice drivers reported owning their own car within six months of gaining their Provisional driver's licence. Vehicle owners reported significantly shorter Learner periods and more risky driving exposure as a Provisional driver. Paying attention to Police presence on the roads appeared normative for young novice drivers: 91% of Learners and 72% of Provisional drivers reported paying attention. Provisional drivers also reported they actively avoided the Police: 25% of males and 13% of females; 23% of rural drivers and 15% of urban drivers. Stage Three also allowed the refinement of the risky behaviour measurement tool (BYNDS) created in Stage One; the original reliable 44-item instrument was refined to a similarly reliable 36-item instrument. A longitudinal exploration of the influence of anxiety, depression, sensation seeking propensity and reward sensitivity upon the risky behaviour of the Provisional driver was also undertaken using data collected in Stages Two and Three. Consistent with the research of Stage One, structural equation modeling revealed anxiety, reward sensitivity and sensation seeking propensity predicted self-reported risky driving behaviour. Again, gender was a moderator, with only reward sensitivity predicting risky driving for males. A measurement model of Akers' social learning theory (SLT) was developed containing six subscales operationalising the four constructs of differential association, imitation, personal attitudes, and differential reinforcement, and the influence of parents and peers was captured within the items in a number of these constructs. Analyses exploring the nature and extent of the psychosocial influences of personal characteristics (step 1), Akers' SLT (step 2), and elements of the prototype/willingness model (PWM) (step 3) upon self-reported speeding by the Provisional driver in a hierarchical multiple regression model found the following significant predictors: gender (male), car ownership (own car), reward sensitivity (greater sensitivity), depression (greater depression), personal attitudes (more risky attitudes), and speeding (more speeding) as a Learner. The research findings have considerable implications for road safety researchers, policy-makers, mental health professionals and medical practitioners alike. A broad range of issues need to be considered when developing, implementing and evaluating interventions for both the intentional and unintentional risky driving behaviours of interest. While a variety of interventions have been historically utilised, including education, enforcement, rehabilitation and incentives, caution is warranted. A multi-faceted approach to improving novice road safety is more likely to be effective, and new and existing countermeasures should capitalise on the potential of parents, peers and Police to be a positive influence upon the risky behaviour of young novice drivers. However, the efficacy of some interventions remains undetermined at this time. Notwithstanding this caveat, countermeasures such as augmenting and strengthening Queensland's GDL program and targeting parents and adolescents particularly warrant further attention. The findings of the research program suggest that Queensland's current-GDL can be strengthened by increasing compliance of young novice drivers with existing conditions and restrictions. The rates of speeding reported by the young Learner driver are particularly alarming for a number of reasons. The Learner is inexperienced in driving, and travelling in excess of speed limits places them at greater risk as they are also inexperienced in detecting and responding appropriately to driving hazards. In addition, the Learner period should provide the foundation for a safe lifetime driving career, enabling the development and reinforcement of non-risky driving habits. Learners who sped reported speeding by greater margins, and at greater frequencies, when they were able to drive independently. Other strategies could also be considered to enhance Queensland's GDL program, addressing both the pre-Licence adolescent and their parents. Options that warrant further investigation to determine their likely effectiveness include screening and treatment of novice drivers by mental health professionals and/or medical practitioners; and general social skills training. Considering the self-reported pre-licence driving of the young novice driver, targeted education of parents may need to occur before their child obtains a Learner licence. It is noteworthy that those participants who reported risky driving during the Learner phase also were more likely to report risky driving behaviour during the Provisional phase; therefore it appears vital that the development of safe driving habits is encouraged from the beginning of the novice period. General education of parents and young novice drivers should inform them of the considerably-increased likelihood of risky driving behaviour, crashes and offences associated with having unlimited access to a vehicle in the early stages of intermediate licensure. Importantly, parents frequently purchase the car that is used by the Provisional driver, who typically lives at home with their parents, and therefore parents are ideally positioned to monitor the journeys of their young novice driver during this early stage of independent driving. Parents are pivotal in the development of their driving child: they are models who are imitated and are sources of attitudes, expectancies, rewards and punishments; and they provide the most driving instruction for the Learner. High rates of self-reported speeding by Learners suggests that GDL programs specifically consider the nature of supervision during the Learner period, encouraging supervisors to be vigilant to compliance with general and GDL-specific road rules, and especially driving in excess of speed limit. Attitudes towards driving are formed before the adolescent reaches the age when they can be legally licensed. Young novice drivers with risky personal attitudes towards driving reported more risky driving behaviour, suggesting that countermeasures should target such attitudes and that such interventions might be implemented before the adolescent is licensed. The risky behaviours and attitudes of friends were also found to be influential, and given that young novice drivers tend to carry their friends as their passengers, a group intervention such as provided in a school class context may prove more effective. Social skills interventions that encourage the novice to resist the negative influences of their friends and their peer passengers, and to not imitate the risky driving behaviour of their friends, may also be effective. The punishments and rewards anticipated from and administered by friends were also found to influence the self-reported risky behaviour of the young novice driver; therefore young persons could be encouraged to sanction the risky, and to reward the non-risky, driving of their novice friends. Adolescent health programs and related initiatives need to more specifically consider the risks associated with driving. Young novice drivers are also adolescents, a developmental period associated with depression and anxiety. Depression, anxiety, and sensation seeking propensity were found to be predictive of risky driving; therefore interventions targeting psychological distress, whilst discouraging the expression of sensation seeking propensity whilst driving, warrant development and trialing. In addition, given that reward sensitivity was also predictive, a scheme which rewards novice drivers for safe driving behaviour - rather than rewarding the novice through emotional and instrumental rewards for risky driving behaviour - requires further investigation. The Police were also influential in the risky driving behaviour of young novices. Young novice drivers who had been detected for an offence, and then avoided punishment, reacted differentially, with some drivers appearing to become less risky after the encounter, whilst for others their risky behaviour appeared to be reinforced and therefore was more likely to be performed again. Such drivers saw t
Resumo:
Background Transfusion-related acute lung injury (TRALI) is a serious and potentially fatal consequence of transfusion. A two-event TRALI model demonstrated date-of-expiry - day (D) 5 platelet (PLT) and D42 packed red blood cell (PRBC) supernatants (SN) induced TRALI in LPS-treated sheep. We have adapted a whole blood transfusion culture model as an investigative bridge between the ovine TRALI model human responses to transfusion. Methods A whole blood transfusion model was adapted to replicate the ovine model - specifically +/- 0.23μg/mL LPS as the first event and 10% SN volume (transfusion) as the second event. Four pooled SN from blood products, previously used in the TRALI ovine model, were investigated: D1-PLT, D5-PLT, D1-PRBC, and D42-PRBC. Fresh human whole blood (recipient) was mixed with combinations of LPS and BP-SN stimuli and incubated in vitro for 6 hrs. Addition of golgi plug enabled measurement of monocyte cytokine production (IL-6, IL-8, IL-10, IL-12, TNF-α, IL-1α, CXCL-5, IP-10, MIP-1α, MCP-1) using multi-colour flow cytometry. Responses for 6 recipients were assessed. Results In the presence of LPS, D42-PRBC-SN significantly increased monocyte IL-6 (P=0.031), IL-8 (P=0.016) and IL-1α (P=0.008) production compared to D1-PRBC-SN. This response to D42-PRBC-SN was LPS-dependent, and was not evident in non-LPSstimulated controls. This response was also specific to D42-PRBC-SN, as similar changes were not evident for the D5-PLT-SN, compared to the D1-PLT-SN, regardless of the presence of LPS. D5-PLT-SN significantly increased IL-12 production (P=0.024) compared to D1-PLT-SN. This response was again LPS-dependent. Conclusions These data demonstrate a novel two-event mechanism of monocyte inflammatory response that was dependent upon both the presence of date-of-expiry blood product SN and LPS. Further, these results demonstrate different cytokines responses induced by date-of-expiry PLT-SN and PRBC-SN. These data are consistent with the evidence from the ovine TRALI model, and enhancing its relevance to transfusion related changes in humans.
Resumo:
This presentation addresses issues related to leadership, academic development and scholarship of teaching and learning, and highlights research funded by the Australian Office of Learning and Teaching (OLT) designed to embed and sustain peer review of teaching within the culture of 5 Australian universities: Queensland University of Technology, University of Technology, Sydney, University of Adelaide, Curtin University, and Charles Darwin University. Peer review of teaching in higher education will be emphasised as a professional process for providing feedback on teaching and learning practice, which if sustained, can become an effective ongoing strategy for academic development (Barnard et al, 2011; Bell, 2005; Bolt and Atkinson, 2010; McGill & Beaty 2001, 1992; Kemmis & McTaggart, 2000). The research affirms that using developmental peer review models (Barnard et al, 2011; D'Andrea, 2002; Hammersley-Fletcher & Orsmond, 2004) can bring about successful implementation, especially when implemented within a distributive leadership framework (Spillane & Healey, 2010). The project’s aims and objectives were to develop leadership capacity and integrate peer review as a cultural practice in higher education. The research design was a two stage inquiry process over 2 years. The project began in July 2011 and encompassed a development and pilot phase followed by a cascade phase with questionnaire and focus group evaluation processes to support ongoing improvement and measures of outcome. Leadership development activities included locally delivered workshops complemented by the identification and support of champions. To optimise long term sustainability, the project was implemented through existing learning and teaching structures and processes within the respective partner universities. Research outcomes highlight the fundamentals of peer review of teaching and the broader contextual elements of integration, leadership and development, expressed as a conceptual model for embedding peer review of teaching within higher education. The research opens a communicative space about introduction of peer review that goes further than simply espousing its worth and introduction. The conceptual model highlights the importance of development of distributive leadership capacity, integration of policies and processes, and understanding the values, beliefs, assumptions and behaviors embedded in an organizational culture. The presentation overviews empirical findings that demonstrate progress to advance peer review requires an ‘across-the-board’ commitment to embed change, and inherently demands a process that co-creates connection across colleagues, discipline groups, and the university sector. Progress toward peer review of teaching as a cultural phenomenon can be achieved and has advantages for academic staff, scholarship, teaching evaluation and an organisation, if attention is given to strategies that influence the contexts and cultures of teaching practice. Peer review as a strategy to develop excellence in teaching is considered from a holistic perspective that by necessity encompasses all elements of an educational environment and has a focus on scholarship of teaching. The work is ongoing and has implication for policy, research, teaching development and student outcomes, and has potential application world-wide.
Resumo:
alpha-Carboxylate radical anions are potential reactive intermediates in the free radical oxidation of biological molecules (e. g., fatty acids, peptides and proteins). We have synthesised well-defined alpha-carboxylate radical anions in the gas phase by UV laser photolysis of halogenated precursors in an ion-trap mass spectrometer. Reactions of isolated acetate ((center dot)CH(2)CO(2)) and 1-carboxylatobutyl (CH(3)CH(2)CH(2)(center dot)CHCO(2)(-)) radical anions with dioxygen yield carbonate (CO(3)(center dot-)) radical anions and this chemistry is shown to be a hallmark of oxidation in simple and alkyl-substituted cross-conjugated species. Previous solution phase studies have shown that C(alpha)-radicals in peptides, formed from free radical damage, combine with dioxygen to form peroxyl radicals that subsequently decompose into imine and keto acid products. Here, we demonstrate that a novel alternative pathway exists for two alpha-carboxylate C(alpha)-radical anions: the acetylglycinate radical anion (CH(3)C(O)NH(center dot)CHCO(2)(-)) and the model peptide radical anion, YGGFG(center dot-). Reaction of these radical anions with dioxygen results in concerted loss of carbon dioxide and hydroxyl radical. The reaction of the acetylglycinate radical anion with dioxygen reveals a two-stage process involving a slow, followed by a fast kinetic regime. Computational modelling suggests the reversible formation of the C(alpha) peroxyl radical facilitates proton transfer from the amide to the carboxylate group, a process reminiscent of, but distinctive from, classical proton-transfer catalysis. Interestingly, inclusion of this isomerization step in the RRKM/ME modelling of a G3SX level potential energy surface enables recapitulation of the experimentally observed two-stage kinetics.
Resumo:
Portable water-filled road barriers (PWFB) are roadside structures placed on temporary construction zones to separate work site from traffic. Recent changes in governing standards require PWFB to adhere to strict compliance in terms of lateral displacement and vehicle redirectionality. Actual PWFB test can be very costly, thus researchers resort to Finite Element Analysis (FEA) in the initial designs phase. There has been many research conducted on concrete barriers and flexible steel barriers using FEA, however not many was done pertaining to PWFB. This research probes a new technique to model joints in PWFB. Two methods to model the joining mechanism are presented and discussed in relation to its practicality and accuracy. Moreover, the study of the physical gap and mass of the barrier was investigated. Outcome from this research will benefit PWFB research and allow road barrier designers better knowledge in developing the next generation of road safety structures.