521 resultados para Tripartite synapse
Resumo:
Current concepts of synaptic fine-structure are derived from electron microscopic studies of tissue fixed by chemical fixation using aldehydes. However, chemical fixation with glutaraldehyde and paraformaldehyde and subsequent dehydration in ethanol result in uncontrolled tissue shrinkage. While electron microscopy allows for the unequivocal identification of synaptic contacts, it cannot be used for real-time analysis of structural changes at synapses. For the latter purpose advanced fluorescence microscopy techniques are to be applied which, however, do not allow for the identification of synaptic contacts. Here, two approaches are described that may overcome, at least in part, some of these drawbacks in the study of synapses. By focusing on a characteristic, easily identifiable synapse, the mossy fiber synapse in the hippocampus, we first describe high-pressure freezing of fresh tissue as a method that may be applied to study subtle changes in synaptic ultrastructure associated with functional synaptic plasticity. Next, we propose to label presynaptic mossy fiber terminals and postsynaptic complex spines on CA3 pyramidal neurons by different fluorescent dyes to allow for the real-time monitoring of these synapses in living tissue over extended periods of time. We expect these approaches to lead to new insights into the structure and function of central synapses.
Resumo:
Directed release of human immunodeficiency virus type 1 (HIV-1) into the cleft of the virological synapse that can form between infected and uninfected T cells, for example, in lymph nodes, is thought to contribute to the systemic spread of this virus. In contrast, influenza virus, which causes local infections, is shed into the airways of the respiratory tract from free surfaces of epithelial cells. We now demonstrate that such differential release of HIV-1 and influenza virus is paralleled, at the subcellular level, by viral assembly at different microsegments of the plasma membrane of HeLa cells. HIV-1, but not influenza virus, buds through microdomains containing the tetraspanins CD9 and CD63. Consequently, the anti-CD9 antibody K41, which redistributes its antigen and also other tetraspanins to cell-cell adhesion sites, interferes with HIV-1 but not with influenza virus release. Altogether, these data strongly suggest that the bimodal egress of these two pathogenic viruses, like their entry into target cells, is guided by specific sets of host cell proteins.
Resumo:
This thesis examines digital technologies used by technical communicators in healthcare settings. I show that technical communicators, who function as users, advocators and evaluators, need a useable framework for ethical engagement with digital technologies, which integrally affect the physician-patient relationship. Therefore, I apply rhetorical methodology by producing useable knowledge and phenomenological methodology by examining lived experiences of technical communicators. Substantiation comes from theories spanning technical communication, philosophy, and composition studies. Evidence also emerges from qualitative interviews with communication professionals working in healthcare; my concerns arise from personal experiences with electronic recordkeeping in the exam room. This thesis anticipates challenging the presumed theory-practice divide while encouraging greater disciplinary reciprocity. Because technical communication infuses theory into productive capacity, this thesis presents the tripartite summons of the ethical technical communicator: to exercise critically-reflective action that safeguards the physician-patient relationship by ways of using digital technologies, advocating for audiences, and evaluating digital technologies.
Resumo:
The B-box motif is the defining feature of the TRIM family of proteins, characterized by a RING finger-B-box-coiled coil tripartite fold. We have elucidated the crystal structure of B-box 2 (B2) from MuRF1, a TRIM protein that supports a wide variety of protein interactions in the sarcomere and regulates the trophic state of striated muscle tissue. MuRF1 B2 coordinates two zinc ions through a cross-brace alpha/beta-topology typical of members of the RING finger superfamily. However, it self-associates into dimers with high affinity. The dimerization pattern is mediated by the helical component of this fold and is unique among RING-like folds. This B2 reveals a long shallow groove that encircles the C-terminal metal binding site ZnII and appears as the defining protein-protein interaction feature of this domain. A cluster of conserved hydrophobic residues in this groove and, in particular, a highly conserved aromatic residue (Y133 in MuRF1 B2) is likely to be central to this role. We expect these findings to aid the future exploration of the cellular function and therapeutic potential of MuRF1.
Resumo:
In the laboratory of Dr. Dieter Jaeger at Emory University, we use computer simulations to study how the biophysical properties of neurons—including their three-dimensional structure, passive membrane resistance and capacitance, and active membrane conductances generated by ion channels—affect the way that the neurons transfer synaptic inputs into the action potential streams that represent their output. Because our ultimate goal is to understand how neurons process and relay information in a living animal, we try to make our computer simulations as realistic as possible. As such, the computer models reflect the detailed morphology and all of the ion channels known to exist in the particular neuron types being simulated, and the model neurons are tested with synaptic input patterns that are intended to approximate the inputs that real neurons receive in vivo. The purpose of this workshop tutorial was to explain what we mean by ‘in vivo-like’ synaptic input patterns, and how we introduce these input patterns into our computer simulations using the freely available GENESIS software package (http://www.genesis-sim.org/GENESIS). The presentation was divided into four sections: first, an explanation of what we are talking about when we refer to in vivo-like synaptic input patterns
Resumo:
The report examines the relationship between day care institutions, schools and so called “parents unfamiliar to education” as well as the relationship between the institutions. With in Danish public and professional discourse concepts like parents unfamiliar to education are usually referring to environments, parents or families with either no or just very restricted experience of education except for the basic school (folkeskole). The “grand old man” of Danish educational research, Prof. Em. Erik Jørgen Hansen, defines the concept as follows: Parents who are distant from or not familiar with education, are parents without tradition of education and by that fact they are not able to contribute constructively in order to back up their own children during their education. Many teachers and pedagogues are not used to that term; they rather prefer concepts like “socially exposed” or “socially disadvantaged” parents or social classes or strata. The report does not only focus on parents who are not capable to support the school achievements of their children, since a low level of education is usually connected with social disadvantage. Such parents are often not capable of understanding and meeting the demands from side of the school when sending their children to school. They lack the competencies or the necessary competence of action. For the moment being much attention is done from side of the Ministries of Education and Social Affairs (recently renamed Ministry of Welfare) in order to create equal possibilities for all children. Many kinds of expertise (directions, counsels, researchers, etc.) have been more than eager to promote recommendations aiming at achieving the ambitious goal: 2015 95% of all young people should complement a full education (classes 10.-12.). Research results are pointing out the importance of increased participation of parents. In other word the agenda is set for ‘parents’ education’. It seems necessary to underline that Danish welfare policy has been changing rather radical. The classic model was an understanding of welfare as social assurance and/or as social distribution – based on social solidarity. The modern model looks like welfare as social service and/or social investment. This means that citizens are changing role – from user and/or citizen to consumer and/or investor. The Danish state is in correspondence with decisions taken by the government investing in a national future shaped by global competition. The new models of welfare – “service” and “investment” – imply severe changes in hitherto known concepts of family life, relationship between parents and children etc. As an example the investment model points at a new implementation of the relationship between social rights and the rights of freedom. The service model has demonstrated that weakness that the access to qualified services in the field of health or education is becoming more and more dependent of the private purchasing power. The weakness of the investment model is that it represents a sort of “The Winner takes it all” – since a political majority is enabled to make agendas in societal fields former protected by the tripartite power and the rights of freedom of the citizens. The outcome of the Danish development seems to be an establishment of a political governed public service industry which on one side are capable of competing on market conditions and on the other are able being governed by contracts. This represents a new form of close linking of politics, economy and professional work. Attempts of controlling education, pedagogy and thereby the population are not a recent invention. In European history we could easily point at several such experiments. The real news is the linking between political priorities and exercise of public activities by economic incentives. By defining visible goals for the public servants, by introducing measurement of achievements and effects, and by implementing a new wage policy depending on achievements and/or effects a new system of accountability is manufactured. The consequences are already perceptible. The government decides to do some special interventions concerning parents, children or youngsters, the public servants on municipality level are instructed to carry out their services by following a manual, and the parents are no longer protected by privacy. Protection of privacy and minority is no longer a valuable argumentation to prevent further interventions in people’s life (health, food, school, etc.). The citizens are becoming objects of investment, also implying that people are investing in their own health, education, and family. This means that investments in changes of life style and development of competences go hand in hand. The below mentioned programmes are conditioned by this shift.
Resumo:
This article explores children’s participation and citizenship, taking its point of departure in the empirical observation of a paradox: On the hand there is a general participatory climate and a growing commitment to empowerment of children, and on the other hand some children’s experience of discrimination, disciplining and distrust. The analysis is structured into three main parts: 1) Participation, approached from Hart’s Ladder of Participation and Bourdieu’s theorizing of power dynamics; 2) Rights, using Marshall’s tripartite conceptualization, namely civil rights, political rights and social rights, supplemented by a discussion of the right to care and cultural rights; and 3) Identity, theorized using Delanty’s conceptualization of citizenship as a learning process The article concludes that children’s citizenship, and the initiatives that are accounted for as facilitating their well being and participation though social work, too often tend towards tokenism if not discriminatory disciplining and exclusion, rather than empowerment, due to political, organisational and discursively shaped power relations.
Resumo:
Regulation of glutamate transporters accompanies plasticity of some glutamatergic synapses. The regulation of glutamate uptake at the Aplysia sensorimotor synapse during long-term facilitation (LTF) was investigated. Previously, increases in levels of ApGT1 (Aplysia glutamate transporter 1) in synaptic membranes were found to be related to long-term increases in glutamate uptake. In this study, we found that regulation of ApGT1 during LTF appears to occur post-translationally. Serotonin (5-HT) a transmitter that induces LTF did not increase synthesis of ApGT1. A pool of ApGT1 appears to exist in sensory neuron somata, which is transported to the terminals by axonal transport. Blocking the rough endoplasmic reticulum-Golgi-trans-Golgi network (TGN) pathway with Brefeldin A prevented the 5-HT-induced increase of ApGT1 in terminals. Also, 5-HT produced changes in post-translational modifications of ApGT1 as well as changes in the levels of an ApGT1-co-precipitating protein. These results suggest that regulation of trafficking of ApGT1 from the vesicular trafficking system (rough endoplasmic reticulum-Golgi-TGN) in the sensory neuron somata to the terminals by post-translational modifications and protein interactions appears to be the mechanism underlying the increase in ApGT1, and thus, glutamate uptake during memory formation.
Resumo:
Protein-Protein Interactions That Regulate Neurotransmitter Release from Retinal Ribbon Synapses Photoreceptors and bipolar cells in the retina form specialized chemical synapses called ribbon synapses. This type of synapse differs physiologically from “conventional” chemical synapses. While “conventional” synapses exocytose neurotransmitter-filled vesicles in an all-or-none fashion in response to an action potential, a retinal ribbon synapse can release neurotransmitter tonically (sustained) in response to graded changes in membrane potential or phasically (transient) in response to a large change in membrane potential. Synaptic vesicle exocytosis is a tightly controlled process involving many protein-protein interactions. Therefore, it is likely that the dissimilarity in the release properties of retinal ribbon synapses and conventional synapses is the result of molecular differences between the two synapse types. Consistent with this idea, previous studies have demonstrated that ribbon synapses in the retina do not contain the t-SNARE (target-soluble N-ethylmaleimide-sensitive factor attachment protein receptor) syntaxin 1A that is found in conventional synapses of the nervous system. In contrast, ribbon synapses of the mammalian retina contain the related isoform, syntaxin 3B. Given that SNARE proteins play an important role in neurotransmitter release in conventional synapses, the purpose of this study was to characterize syntaxin 3B in order to elucidate what role this protein plays in neurotransmitter release from retinal ribbon synapses. Using molecular and biochemical techniques, it was demonstrated that syntaxin 3B is a binding partner of several presynaptic proteins that play a important role in synaptic vesicle exocytosis from retinal ribbon synapses and it is an evolutionarily conserved protein.
Resumo:
Present models of long-term sensitization in Aplysia californica indicate that the enhanced behavioral response is due, at least in part, to outgrowth of sensory neurons mediating defensive withdrawal reflexes. Presumably, this outgrowth strengthens pre-existing connections by formation of new synapses with follower neurons. However, the relationship between the number of sensorimotor contacts and the physiological strength of the connection has never been examined in intact ganglia. As a first step in addressing this issue, we used confocal microscopy to examine sites of contact between sensory and motor neurons in naive animals. Our results revealed relatively few contacts between physiologically connected cells. In addition, the number of contact sites was proportional to the amplitude of the EPSP elicited in the follower motor neuron by direct stimulation of the sensory neuron. This is the first time such a correlation has been observed in the central nervous system. Serotonin is the neurotransmitter most closely examined for its role in modulating synaptic strength at the sensorimotor synapse. However, the structural relationship of serotonergic processes and sensorimotor synapses has never been examined. Surprisingly, serotonergic processes usually made contact with sensory and motor neurons at sites located relatively distant from the sensorimotor synapse. This result implies that heterosynaptic regulation is due to nondirected release of serotonin into the neuropil.
Resumo:
Mit dem Raumkonzept Schweiz wurde das erste tripartite Konzept zur Förderung der nachhaltigen Raumentwicklung verabschiedet. – Gegen die beschlossene Teilrevision des Raumplanungsgesetzes, welche der Landschaftsinitiative als indirekter Gegenvorschlag gegenübergestellt worden war, ergriff der Schweizerische Gewerbeverband erfolgreich das Referendum. – Mit einem hauchdünnen Mehr nahmen Volk und Stände die Volksinitiative „Schluss mit dem uferlosen Bau von Zweitwohnungen“ überraschend an. Der Bundesrat erarbeitete sogleich eine Übergangsverordnung, welche per 1.1.13 in Kraft tritt. – Mit der Ablehnung dreier Volksinitiativen sprachen sich die Stimmbürgerinnen und Stimmbürger gegen eine verstärkte Wohneigentumsförderung aus.
Resumo:
Gap junctions between neurons form the structural substrate for electrical synapses. Connexin 36 (Cx36, and its non-mammalian ortholog connexin 35) is the major neuronal gap junction protein in the central nervous system (CNS), and contributes to several important neuronal functions including neuronal synchronization, signal averaging, network oscillations, and motor learning. Connexin 36 is strongly expressed in the retina, where it is an obligatory component of the high-sensitivity rod photoreceptor pathway. A fundamental requirement of the retina is to adapt to broadly varying inputs in order to maintain a dynamic range of signaling output. Modulation of the strength of electrical coupling between networks of retinal neurons, including the Cx36-coupled AII amacrine cell in the primary rod circuit, is a hallmark of retinal luminance adaptation. However, very little is known about the mechanisms regulating dynamic modulation of Cx36-mediated coupling. The primary goal of this work was to understand how cellular signaling mechanisms regulate coupling through Cx36 gap junctions. We began by developing and characterizing phospho-specific antibodies against key regulatory phosphorylation sites on Cx36. Using these tools we showed that phosphorylation of Cx35 in fish models varies with light adaptation state, and is modulated by acute changes in background illumination. We next turned our focus to the well-studied and readily identifiable AII amacrine cell in mammalian retina. Using this model we showed that increased phosphorylation of Cx36 is directly related to increased coupling through these gap junctions, and that the dopamine-stimulated uncoupling of the AII network is mediated by dephosphorylation of Cx36 via protein kinase A-stimulated protein phosphatase 2A activity. We then showed that increased phosphorylation of Cx36 on the AII amacrine network is driven by depolarization of presynaptic ON-type bipolar cells as well as background light increments. This increase in phosphorylation is mediated by activation of extrasynaptic NMDA receptors associated with Cx36 gap junctions on AII amacrine cells and by Ca2+-calmodulin-dependent protein kinase II activation. Finally, these studies indicated that coupling is regulated locally at individual gap junction plaques. This work provides a framework for future study of regulation of Cx36-mediated coupling, in which increased phosphorylation of Cx36 indicates increased neuronal coupling.
Resumo:
The induction of late long-term potentiation (L-LTP) involves complex interactions among second-messenger cascades. To gain insights into these interactions, a mathematical model was developed for L-LTP induction in the CA1 region of the hippocampus. The differential equation-based model represents actions of protein kinase A (PKA), MAP kinase (MAPK), and CaM kinase II (CAMKII) in the vicinity of the synapse, and activation of transcription by CaM kinase IV (CAMKIV) and MAPK. L-LTP is represented by increases in a synaptic weight. Simulations suggest that steep, supralinear stimulus-response relationships between stimuli (e.g., elevations in [Ca(2+)]) and kinase activation are essential for translating brief stimuli into long-lasting gene activation and synaptic weight increases. Convergence of multiple kinase activities to induce L-LTP helps to generate a threshold whereby the amount of L-LTP varies steeply with the number of brief (tetanic) electrical stimuli. The model simulates tetanic, -burst, pairing-induced, and chemical L-LTP, as well as L-LTP due to synaptic tagging. The model also simulates inhibition of L-LTP by inhibition of MAPK, CAMKII, PKA, or CAMKIV. The model predicts results of experiments to delineate mechanisms underlying L-LTP induction and expression. For example, the cAMP antagonist RpcAMPs, which inhibits L-LTP induction, is predicted to inhibit ERK activation. The model also appears useful to clarify similarities and differences between hippocampal L-LTP and long-term synaptic strengthening in other systems.
Resumo:
An increase in transmitter release accompanying long-term sensitization and facilitation occurs at the glutamatergic sensorimotor synapse of Aplysia. We report that a long-term increase in neuronal Glu uptake also accompanies long-term sensitization. Synaptosomes from pleural-pedal ganglia exhibited sodium-dependent, high-affinity Glu transport. Different treatments that induce long-term enhancement of the siphon-withdrawal reflex, or long-term synaptic facilitation increased Glu uptake. Moreover, 5-hydroxytryptamine, a treatment that induces long-term facilitation, also produced a long-term increase in Glu uptake in cultures of sensory neurons. The mechanism for the increase in uptake is an increase in the V(max) of transport. The long-term increase in Glu uptake appeared to be dependent on mRNA and protein synthesis, and transport through the Golgi, because 5,6-dichlorobenzimidazole riboside, emetine, and brefeldin A inhibited the increase in Glu uptake. Also, injection of emetine and 5,6-dichlorobenzimidazole into Aplysia prevented long-term sensitization. Synthesis of Glu itself may be regulated during long-term sensitization because the same treatments that produced an increase in Glu uptake also produced a parallel increase in Gln uptake. These results suggest that coordinated regulation of a number of different processes may be required to establish or maintain long-term synaptic facilitation.