936 resultados para Scheduler simulator
Resumo:
Simulation has been widely used to estimate the benefits of Cooperative Systems (CS) based on Inter-Vehicular Communications (IVC). This paper presents a new architecture built with the SiVIC simulator and the RTMaps™ multisensors prototyping platform. We introduce several improvements from a previous similar architecture, regarding IVC modelisation and vehicles’ control. It has been tuned with on-road measurements to improve fidelity. We discuss the results of a freeway emergency braking scenario (EEBL) implemented to validate our architecture’s capabilities.
Resumo:
Deploying wireless networks in networked control systems (NCSs) has become more and more popular during the last few years. As a typical type of real-time control systems, an NCS is sensitive to long and nondeterministic time delay and packet losses. However, the nature of the wireless channel has the potential to degrade the performance of NCS networks in many aspects, particularly in time delay and packet losses. Transport layer protocols could play an important role in providing both reliable and fast transmission service to fulfill NCS’s real-time transmission requirements. Unfortunately, none of the existing transport protocols, including the Transport Control Protocol (TCP) and the User Datagram Protocol (UDP), was designed for real-time control applications. Moreover, periodic data and sporadic data are two types of real-time data traffic with different priorities in an NCS. Due to the lack of support for prioritized transmission service, the real-time performance for periodic and sporadic data in an NCS network is often degraded significantly, particularly under congested network conditions. To address these problems, a new transport layer protocol called Reliable Real-Time Transport Protocol (RRTTP) is proposed in this thesis. As a UDP-based protocol, RRTTP inherits UDP’s simplicity and fast transmission features. To improve the reliability, a retransmission and an acknowledgement mechanism are designed in RRTTP to compensate for packet losses. They are able to avoid unnecessary retransmission of the out-of-date packets in NCSs, and collisions are unlikely to happen, and small transmission delay can be achieved. Moreover, a prioritized transmission mechanism is also designed in RRTTP to improve the real-time performance of NCS networks under congested traffic conditions. Furthermore, the proposed RRTTP is implemented in the Network Simulator 2 for comprehensive simulations. The simulation results demonstrate that RRTTP outperforms TCP and UDP in terms of real-time transmissions in an NCS over wireless networks.
Resumo:
Video presented as part of Smart Services CRC Participants conferences. This video shows an example of the latest version of our middleware linking the YAWL workflow engine to Open Simulator. We have created a simple example of an accident victim being brought into a Hospital to be processed. The preliminary interface to the YAWL accident treatment workflow is shown as a worklist on the left of the image. The tasks are presented to the avatar via this interface, in a similar manner as done in web based workflow systems. Objects in the simulator are instrumented with a knowledge base, that enables the validation of actions within the world, to make sure that tasks are carried out correctly.
Resumo:
The optimisation study of the fabrication of a compact TiO2 blocking layer (via Spray Pyrolysis Deposition) for poly (3-hexylthiopene) (P3HT) for Solid State Dye Sensitized Solar Cells (SDSCs) is reported. We used a novel spray TiO2 precursor solution composition obtained by adding acetylacetone to a conventional formulation (Diisopropoxytitanium bis (acetylacetonate) in ethanol). By Scanning Electron Microscopy a TiO2 layer with compact morphology and thickness of around 100 nmis shown. Through a Tafel plot analysis an enhancement of the device diode-like behaviour induced by the acetylacetone blocking layer respect to the conventional one is observed. Significantly, the device fabricatedwith the acetylacetone blocking layer shows an overall increment of the cell performance with respect to the cellwith the conventional one (DJsc/Jsc = +13.8%, DFF/FF = +39.7%, DPCE/PCE = +55.6%). A conversion efficiency optimumis found for 15 successive spray cycles where the diode-like behaviour of the acetylacetone blocking layer is more effective. Over three batches of cells (fabricated with P3HT and dye D35) an average conversion efficiency value of 3.9% (under a class A sun simulator with 1 sun A.M. 1.5 illumination conditions) was measured. From the best cell we fabricated a conversion efficiency value of 4.5% was extracted. This represents a significant increment with respect to previously reported values for P3HT/dye D35 based SDSCs.
Resumo:
Wireless networked control systems (WNCSs) have been widely used in the areas of manufacturing and industrial processing over the last few years. They provide real-time control with a unique characteristic: periodic traffic. These systems have a time-critical requirement. Due to current wireless mechanisms, the WNCS performance suffers from long time-varying delays, packet dropout, and inefficient channel utilization. Current wirelessly networked applications like WNCSs are designed upon the layered architecture basis. The features of this layered architecture constrain the performance of these demanding applications. Numerous efforts have attempted to use cross-layer design (CLD) approaches to improve the performance of various networked applications. However, the existing research rarely considers large-scale networks and congestion network conditions in WNCSs. In addition, there is a lack of discussions on how to apply CLD approaches in WNCSs. This thesis proposes a cross-layer design methodology to address the issues of periodic traffic timeliness, as well as to promote the efficiency of channel utilization in WNCSs. The design of the proposed CLD is highlighted by the measurement of the underlying network condition, the classification of the network state, and the adjustment of sampling period between sensors and controllers. This period adjustment is able to maintain the minimally allowable sampling period, and also maximize the control performance. Extensive simulations are conducted using the network simulator NS-2 to evaluate the performance of the proposed CLD. The comparative studies involve two aspects of communications, with and without using the proposed CLD, respectively. The results show that the proposed CLD is capable of fulfilling the timeliness requirement under congested network conditions, and is also able to improve the channel utilization efficiency and the proportion of effective data in WNCSs.
Resumo:
The use of intelligent transport systems is proliferating across the Australian road network, particularly on major freeways. New technology allows a greater range of signs and messages to be displayed to drivers. While there has been a long history of human factors analyses of signage, no evaluation has been conducted on this novel, sometimes dynamic, signage or potential interactions when co-located. The purpose of this driving simulator study was to investigate drivers’ behavioural changes and comprehension resulting from the co-location of Lane Use Management Systems with static signs and (Enhanced) Variable Message Signs on Queensland motorways. A section of motorway was simulated, and nine scenarios were developed which presented a combination of signage cases across levels of driving task complexity. Two higher-risk road user groups were targeted for this research on an advanced driving simulator: older (65+ years, N=21) and younger (18-22 years, N=20) drivers. Changes in sign co-location and task complexity had small effect on driver comprehension of the signs and vehicle dynamics variables, including difference with the posted speed limit, headway, standard deviation of lane keeping and brake jerks. However, increasing the amount of information provided to drivers at a given location (by co-locating several signs) increased participants’ gaze duration on the signs. With co-location of signs and without added task complexity, a single gaze was over 2s for more than half of the population tested for both groups, and up to 6 seconds for some individuals.
Resumo:
Objectives To examine the effects on monotonous driving of normal sleep versus one night of sleep restriction in continuous positive airway pressure (CPAP) treated obstructive sleep apnoea (OSA) patients compared with age matched healthy controls. Methods Nineteen CPAP treated compliant male OSA patients (OSA-treated patients (OPs)), aged 50–75 years, and 20 healthy age-matched controls underwent both a normal night’s sleep and sleep restriction to 5 h (OPs remained on CPAP) in a counterbalanced design. All participants completed a 2 h afternoon monotonous drive in a realistic car simulator. Driving was monitored for sleepiness-related minor and major lane deviations, with ‘safe’ driving time being total time driven prior to first major lane deviation. EEGs were recorded continuously, and subjective sleepiness ratings were taken at regular intervals throughout the drive. Results After a normal night’s sleep, OPs and controls did not differ in terms of driving performance or in their ability to assess the levels of their own sleepiness, with both groups driving ‘safely’ for approximately 90 min. However, after sleep restriction, OPs had a significantly shorter (65 min) safe driving time and had to apply more compensatory effort to maintain their alertness compared with controls. They also underestimated the enhanced sleepiness. Nevertheless, apart from this caveat, there were generally close associations between subjective sleepiness, likelihood of a major lane deviation and EEG changes indicative of sleepiness. Conclusions With a normal night’s sleep, effectively treated older men with OSA drive as safely as healthy men of the same age. However, after restricted sleep, driving impairment is worse than that of controls. This suggests that, although successful CPAP treatment can alleviate potential detrimental effects of OSA on monotonous driving following normal sleep, these patients remain more vulnerable to sleep restriction.
Resumo:
Young men figure prominently in sleep-related road crashes. Non-driving studies show them to be particularly vulnerable to sleep loss, compared with older men. We assessed the effect of a normal night's sleep vs. prior sleep restricted to 5 h, in a counterbalanced design, on prolonged (2 h) afternoon simulated driving in 20 younger (av. 23 y) and 19 older (av. 67 y) healthy men. Driving was monitored for sleepiness related lane deviations, EEGs were recorded continuously and subjective ratings of sleepiness taken every 200 s. Following normal sleep there were no differences between groups for any measure. After sleep restriction younger drivers showed significantly more sleepiness-related deviations and greater 4–11 Hz EEG power, indicative of sleepiness. There was a near significant increase in subjective sleepiness. Correlations between the EEG and subjective measures were highly significant for both groups, indicating good self-insight into increasing sleepiness. We confirm the greater vulnerability of younger drivers to sleep loss under prolonged afternoon driving.
Resumo:
Purpose Obstructive sleep apnoea (OSA) patients effectively treated by and compliant with continuous positive air pressure (CPAP) occasionally miss a night’s treatment. The purpose of this study was to use a real car interactive driving simulator to assess the effects of such an occurrence on the next day’s driving, including the extent to which these drivers are aware of increased sleepiness. Methods Eleven long-term compliant CPAP-treated 50–75-year-old male OSA participants completed a 2-h afternoon, simulated, realistic monotonous drive in an instrumented car, twice, following one night: (1) normal sleep with CPAP and (2) nil CPAP. Drifting out of road lane (‘incidents’), subjective sleepiness every 200 s and continuous electroencephalogram (EEG) activities indicative of sleepiness and compensatory effort were monitored. Results Withdrawal of CPAP markedly increased sleep disturbance and led to significantly more incidents, a shorter ‘safe’ driving duration, increased alpha and theta EEG power and greater subjective sleepiness. However, increased EEG beta activity indicated that more compensatory effort was being applied. Importantly, under both conditions, there was a highly significant correlation between subjective and EEG measures of sleepiness, to the extent that participants were well aware of the effects of nil CPAP. Conclusions Patients should be aware that compliance with treatment every night is crucial for safe driving.
Resumo:
Crash statistics that include the blood alcohol concentration (BAC) of vehicle operators reveal that crash involved motorcyclists are over represented at low BACs (e.g., ≤0.05%). This riding simulator study compared riding performance and hazard response under three low dose alcohol conditions (sober, 0.02% BAC, 0.05% BAC). Forty participants (20 novice, 20 experienced) completed simulated rides in urban and rural scenarios while responding to a safety-critical peripheral detection task (PDT). Results showed a significant increase in the standard deviation of lateral position in the urban scenario and PDT reaction time in the rural scenario under 0.05% BAC compared with zero alcohol. Participants were most likely to collide with an unexpected pedestrian in the urban scenario at 0.02% BAC, with novice participants at a greater relative risk than experienced riders. Novices chose to ride faster than experienced participants in the rural scenario regardless of BAC. Not all results were significant, emphasising the complex situation of the effects of low dose BAC on riding performance, which needs further research. The results of this simulator study provide some support for a legal BAC for motorcyclists below 0.05%.
Resumo:
Distraction resulting from mobile phone use whilst driving has been shown to increase the reaction times of drivers, thereby increasing the likelihood of a crash. This study compares the effects of mobile phone conversations on reaction times of drivers responding to traffic events that occur at different points in a driver’s field of view. The CARRS-Q Advanced Driving Simulator was used to test a group of young drivers on various simulated driving tasks including a traffic event that occurred within the driver’s central vision—a lead vehicle braking suddenly—and an event that occurred within the driver’s peripheral—a pedestrian entering a zebra crossing from a footpath. Thirty-two licensed drivers drove the simulator in three phone conditions: baseline (no phone conversation), and while engaged in hands-free and handheld phone conversations. The drivers were aged between 21 to 26 years and split evenly by gender. Differences in reaction times for an event in a driver’s central vision were not statistically significant across phone conditions, probably due to a lower speed selection by the distracted drivers. In contrast, the reaction times to detect an event that originated in a distracted driver’s peripheral vision were more than 50% longer compared to the baseline condition. A further statistical analysis revealed that deterioration of reaction times to an event in the peripheral vision was greatest for distracted drivers holding a provisional licence. Many critical events originate in a driver’s periphery, including vehicles, bicyclists, and pedestrians emerging from side streets. A reduction in the ability to detect these events while distracted presents a significant safety concern that must be addressed.
Resumo:
The use of mobile phones while driving is more prevalent among young drivers—a less experienced cohort with elevated crash risk. The objective of this study was to examine and better understand the reaction times of young drivers to a traffic event originating in their peripheral vision whilst engaged in a mobile phone conversation. The CARRS-Q Advanced Driving Simulator was used to test a sample of young drivers on various simulated driving tasks, including an event that originated within the driver’s peripheral vision, whereby a pedestrian enters a zebra crossing from a sidewalk. Thirty-two licensed drivers drove the simulator in three phone conditions: baseline (no phone conversation), hands-free and handheld. In addition to driving the simulator each participant completed questionnaires related to driver demographics, driving history, usage of mobile phones while driving, and general mobile phone usage history. The participants were 21 to 26 years old and split evenly by gender. Drivers’ reaction times to a pedestrian in the zebra crossing were modelled using a parametric accelerated failure time (AFT) duration model with a Weibull distribution. Also tested where two different model specifications to account for the structured heterogeneity arising from the repeated measures experimental design. The Weibull AFT model with gamma heterogeneity was found to be the best fitting model and identified four significant variables influencing the reaction times, including phone condition, driver’s age, license type (Provisional license holder or not), and self-reported frequency of usage of handheld phones while driving. The reaction times of drivers were more than 40% longer in the distracted condition compared to baseline (not distracted). Moreover, the impairment of reaction times due to mobile phone conversations was almost double for provisional compared to open license holders. A reduction in the ability to detect traffic events in the periphery whilst distracted presents a significant and measurable safety concern that will undoubtedly persist unless mitigated.
Resumo:
The IEC 61850 family of standards for substation communication systems were released in the early 2000s, and include IEC 61850-8-1 and IEC 61850-9-2 that enable Ethernet to be used for process-level connections between transmission substation switchyards and control rooms. This paper presents an investigation of process bus protection performance, as the in-service behavior of multi-function process buses is largely unknown. An experimental approach was adopted that used a Real Time Digital Simulator and 'live' substation automation devices. The effect of sampling synchronization error and network traffic on transformer differential protection performance was assessed and compared to conventional hard-wired connections. Ethernet was used for all sampled value measurements, circuit breaker tripping, transformer tap-changer position reports and Precision Time Protocol synchronization of sampled value merging unit sampling. Test results showed that the protection relay under investigation operated correctly with process bus network traffic approaching 100% capacity. The protection system was not adversely affected by synchronizing errors significantly larger than the standards permit, suggesting these requirements may be overly conservative. This 'closed loop' approach, using substation automation hardware, validated the operation of protection relays under extreme conditions. Digital connections using a single shared Ethernet network outperformed conventional hard-wired solutions.
Resumo:
This paper addresses challenges part of the shift of paradigm taking place in the way we produce, transmit and use power related to what is known as smart grids. The aim of this paper is to explore present initiatives to establish smart grids as a sustainable and reliable power supply system. We argue that smart grids are not isolated to abstract conceptual models alone. We suggest that establishing sustainable and reliable smart grids depend on series of contributions including modeling and simulation projects, technological infrastructure pilots, systemic methods and training, and not least how these and other elements must interact to add reality to the conceptual models. We present and discuss three initiatives that illuminate smart grids from three very different positions. First, the new power grid simulator project in the electrical engineering PhD program at Queensland University of Technology (QUT). Second, the new smart grids infrastructure pilot run by the Norwegian Centers of Expertise Smart Energy Markets (NCE SMART). And third, the new systemic Master program on next generation energy technology at østfold University College (Hiø). These initiatives represent future threads in a mesh embedding smart grids in models, technology, infrastructure, education, skills and people.
Resumo:
Objectives The UK Department for Transport recommends taking a break from driving every 2 h. This study investigated: (i) if a 2 h drive time on a monotonous road is appropriate for OSA patients treated with CPAP, compared with healthy age matched controls, (ii) the impact of a night’s sleep restriction (with CPAP) and (iii) what happens if these patients miss one nights’ CPAP treatment. Methods About 19 healthy men aged 52–74 y (m = 66.2 y) and 19 OSA participants aged 50–75 y (m = 64.4 y) drove an interactive car simulator under monotonous motorway conditions for 2 h on two afternoons, in a counterbalanced design; (1) following a normal night’s sleep (8 h). (2) following a restricted night’s sleep (5 h), with normal CPAP use (3) following a night without CPAP treatment. (n = 11) Lane drifting incidents, indicative of falling asleep, were recorded for up to 2 h depending on competence to continue driving. Results Normal sleep: Controls drove for an average of 95.9 min (s.d. 37 min) and treated OSA drivers for 89.6 min (s.d. 29 min) without incident. 63.2% of controls and 42.1% of OSA drivers successfully completed the drive without an incident. Sleep restriction: 47.4% of controls and 26.3% OSA drivers finished without incident. Overall: controls drove for an average of 89.5 min (s.d. 39 min) and treated OSA drivers 65 min (s.d. 42 min) without incident. The effect of condition was significant [F(1.36) = 9.237, P < 0.05, eta2 = 0.204]. Stopping CPAP: 18.2% of drivers successfully completed the drive. Overall, participants drove for an average of 50.1 min (s.d. 38 min) without incident. The effect of condition was significant [F(2) = 8.8, P < 0.05, eta2 = 0.468]. Conclusion 52.6% of all drivers were able to complete a 2 hour drive under monotonous conditions after a full night’s sleep. Sleep restriction significantly affected both control and OSA drivers. We find evidence that treated OSA drivers are more impaired by sleep restriction than healthy control, as they were less able to sustain safely the 2 h drive without incidents. OSA drivers should be aware that non-compliance with CPAP can significantly impair driving performance. It may be appropriate to recommend older drivers take a break from driving every 90 min especially when undertaking a monotonous drive, as was the case here.