951 resultados para SOLVENT POLARITIES
Resumo:
This paper investigates the effect of solvent-induced conformational changes of poly(3,6-phenanthrene) on their two-photon absorption (2PA). Such effect was studied employing the wavelength-tunable femtosecond Z-scan technique and modeled using the sum-over-essential states approach. We observed a strong reduction of the 2PA cross-section when the sample was prepared in hexane (poor solvent) in comparison to chloroform (good solvent), which is related to the conformation adopted by the polymer in each case. In chloroform it adopts a random coil conformation, as opposed to the one-handed helix conformation in hexane. Our results pointed out that the coil to helix conformation change decreases the degree of molecular planarity of the polymer pi-conjugated backbone, which is primarily responsible for their optical nonlinearity, contributing to diminishing the effective transition dipole moments and, consequently, the 2PA cross-section. Moreover, by studying the nonlinear response with different light polarization, we showed that, although the solvent-induced conformational change does not alter the molecular symmetry of the polymer, it modifies considerably the direction of the transition dipole moments between the excited states.
Resumo:
The solvent has a significant influence in the rate of reactions promoted by Stryker's reagent The reactions performed in THF were, in most cases, faster than in toluene.
Resumo:
Polymeric sensors with improved resistance to organic solvents were produced via the layer-by-layer thin film deposition followed by chemical cross-linking. According to UV-vis spectroscopy, the mass loss of polyaniline/poly(vinyl alcohol) and polyaniline/novolac-type resin based films deposited onto glass slides was less than 20% when they were submitted to successive immersions (up to 3,000 immersion cycles) into commercially available ethanol and gasoline fuel samples. Polyallylamine hydrochloride/nickel tetrasulfonated phthalocyanine films presented similar stability. The electrical responses assessed by impedance spectroscopy of films deposited onto Au-interdigitated microelectrodes were relatively unaffected after continuous or cyclic immersions into both fuels. After these studies, an array including these polymeric sensors was employed to detect adulteration in ethanol and gasoline samples. After principal component analysis, it was possible to conclude that the proposed sensor array is capable to discriminate with remarkable reproducibility ethanol samples containing different amounts of water or else gasoline samples containing different amounts of ethanol. In both examples, more than 90% of data variance was retained in the first principal component. For each type of sample, ethanol and gasoline, it was found a linear correlation between one of the principal components and the sample's composition. These findings allow one to conclude that these films present great potential for the development of reliable and low-cost sensors for fuel analysis in liquid phase.
Resumo:
The photophysics of the 1-nitronaphthalene molecular system, after the absorption transition to the first singlet excited state, is theoretically studied for investigating the ultrafast multiplicity change to the triplet manifold. The consecutive transient absorption spectra experimentally observed in this molecular system are also studied. To identify the electronic states involved in the nonradiative decay, the minimum energy path of the first singlet excited state is obtained using the complete active space self-consistent field//configurational second-order perturbation approach. A near degeneracy region was found between the first singlet and the second triplet excited states with large spin-orbit coupling between them. The intersystem crossing rate was also evaluated. To support the proposed deactivation model the transient absorption spectra observed in the experiments were also considered. For this, computer simulations using sequential quantum mechanic-molecular mechanic methodology was used to consider the solvent effect in the ground and excited states for proper comparison with the experimental results. The absorption transitions from the second triplet excited state in the relaxed geometry permit to describe the transient absorption band experimentally observed around 200 fs after the absorption transition. This indicates that the T-2 electronic state is populated through the intersystem crossing presented here. The two transient absorption bands experimentally observed between 2 and 45 ps after the absorption transition are described here as the T-1 -> T-3 and T-1 -> T-5 transitions, supporting that the intermediate triplet state (T-2) decays by internal conversion to T-1. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4738757]
Resumo:
Electronic polarization induced by the interaction of a reference molecule with a liquid environment is expected to affect the magnetic shielding constants. Understanding this effect using realistic theoretical models is important for proper use of nuclear magnetic resonance in molecular characterization. In this work, we consider the pyridine molecule in water as a model system to briefly investigate this aspect. Thus, Monte Carlo simulations and quantum mechanics calculations based on the B3LYP/6-311++G (d,p) are used to analyze different aspects of the solvent effects on the N-15 magnetic shielding constant of pyridine in water. This includes in special the geometry relaxation and the electronic polarization of the solute by the solvent. The polarization effect is found to be very important, but, as expected for pyridine, the geometry relaxation contribution is essentially negligible. Using an average electrostatic model of the solvent, the magnetic shielding constant is calculated as -58.7 ppm, in good agreement with the experimental value of -56.3 ppm. The explicit inclusion of hydrogen-bonded water molecules embedded in the electrostatic field of the remaining solvent molecules gives the value of -61.8 ppm.
Resumo:
The fractioning of lemon essential oil can be performed by liquid-liquid extraction using hydrous ethanol as a solvent. A quaternary mixture composed of limonene, gamma-terpinene, beta-pinene, and citral was used to simulate lemon essential oil. In this paper, we present (liquid + liquid) equilibrium data that were experimentally determined for systems containing essential oil compounds, ethanol, and water at T = 298.2 K. The experimental data were correlated using the NRTL and UNIQUAC models, and the mean deviations between calculated and experimental data were less than 0.0053 in all systems, indicating the accuracy of these molecular models in describing our systems. The results show that as the water content in the solvent phase increased, the values of the distribution coefficients decreased, regardless of the type of compound studied. However, the oxygenated compound always showed the highest distribution coefficient among the components of the essential oil, thus making deterpenation of the lemon essential oil a feasible process. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes the adsorption of sodium dodecyl sulfate (SDS) molecules in a low polar solvent on Ge substrate by using Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy and atomic force microscopy (AFM). The maximum SDS amount adsorbed is (5.0 +/- 0.3) x 10(14) molecules cm(-2) in CHCl3, while with the use of CCl4 as subphase the ability of SDS adsorbed is 48% lower. AFM images show that depositions are highly disordered over the interface, and it was possible to establish that the size of the SDS deposition is around 30-40 nm over the Ge surface. A complete description of the infrared spectroscopic bands for the head and tail groups in the SDS molecule is also provided.
Resumo:
Triblock copolymers are made of monomer segments, being the central part usually hydrophobic and the outer parts hydrophilic. By varying sizes, molecular weights and monomer types of the segments one obtains different final molecules, with different physico-chemical properties, which are directly related to the performance of the final product. Looking for new products to be used, among other possibilities, in biological applications, a new polymer (Figure 1) was synthesized by the Dow Chemical and studied by Size Exclusion Chromatography, Fourier Transformed Infrared Spectrometry, Small-angle X-ray Scattering (SAXS) and its cloud point was determined by measuring light transmittance. The studies showed low molecular polydispersivety, but different polarities in the macromolecules fractions. Due to the low solubility of Diol in water, a mixture of water/butyl diglycol was used as solvent. An extensive analysis by SAXS was performed for concentrations from 50 wt% to 80 wt% of Diol in solution. Small concentrations showed very low signal to noise ratio, making it impossible to be analysed. The scattering intensity including the form factor of polydisperse non-homogeneous spheres, and the structure factor of interacting hard spheres was fitted to the curves. As the polymer concentration is high, the fitting of form factors of direct and reverse micelles were compared. The results for direct micelles were better up to 80 wt%, whereas at 90 wt% and 95 wt% the curves were better fitted by reverse micelles. It might seem odd that direct micelles are present up to such high concentrations, but it might have been caused by the presence of butyl diglycol, which increases the solubility of Diol in water. The inner and outer radius of the micelles, electron density distribution, and interaction radius of the micelles were obtained. The polydispersivety increases with Diol concentration. Besides, the interaction radius increases with solvent concentration, even when reversed micelles are present. In the last case, accompanied by an increase of inner radius (water content), as there are fewer Diol molecules to involve the water nuclei, which become larger, further apart, and in less number.
Resumo:
We investigated at the molecular level protein/solvent interactions and their relevance in protein function through the use of amorphous matrices at room temperature. As a model protein, we used the bacterial photosynthetic reaction center (RC) of Rhodobacter sphaeroides, a pigment protein complex which catalyzes the light-induced charge separation initiating the conversion of solar into chemical energy. The thermal fluctuations of the RC and its dielectric conformational relaxation following photoexcitation have been probed by analyzing the recombination kinetics of the primary charge-separated (P+QA-) state, using time resolved optical and EPR spectroscopies. We have shown that the RC dynamics coupled to this electron transfer process can be progressively inhibited at room temperature by decreasing the water content of RC films or of RC-trehalose glassy matrices. Extensive dehydration of the amorphous matrices inhibits RC relaxation and interconversion among conformational substates to an extent comparable to that attained at cryogenic temperatures in water-glycerol samples. An isopiestic method has been developed to finely tune the hydration level of the system. We have combined FTIR spectral analysis of the combination and association bands of residual water with differential light-minus-dark FTIR and high-field EPR spectroscopy to gain information on thermodynamics of water sorption, and on structure/dynamics of the residual water molecules, of protein residues and of RC cofactors. The following main conclusions were reached: (i) the RC dynamics is slaved to that of the hydration shell; (ii) in dehydrated trehalose glasses inhibition of protein dynamics is most likely mediated by residual water molecules simultaneously bound to protein residues and sugar molecules at the protein-matrix interface; (iii) the local environment of cofactors is not involved in the conformational dynamics which stabilizes the P+QA-; (iv) this conformational relaxation appears to be rather delocalized over several aminoacidic residues as well as water molecules weakly hydrogen-bonded to the RC.
Resumo:
The collapse of linear polyelectrolyte chains in a poor solvent: When does a collapsing polyelectrolyte collect its counter ions? The collapse of polyions in a poor solvent is a complex system and is an active research subject in the theoretical polyelectrolyte community. The complexity is due to the subtle interplay between hydrophobic effects, electrostatic interactions, entropy elasticity, intrinsic excluded volume as well as specific counter-ion and co-ion properties. Long range Coulomb forces can obscure single molecule properties. The here presented approach is to use just a small amount of screening salt in combination with a very high sample dilution in order to screen intermolecular interaction whereas keeping intramolecular interaction as much as possible (polyelectrolyte concentration cp ≤ 12 mg/L, salt concentration; Cs = 10^-5 mol/L). This is so far not described in literature. During collapse, the polyion is subject to a drastic change in size along with strong reduction of free counterions in solution. Therefore light scattering was utilized to obtain the size of the polyion whereas a conductivity setup was developed to monitor the proceeding of counterion collection by the polyion. Partially quaternized PVP’s below and above the Manning limit were investigated and compared to the collapse of their uncharged precursor. The collapses were induced by an isorefractive solvent/non-solvent mixture consisting of 1-propanol and 2-pentanone, with nearly constant dielectric constant. The solvent quality for the uncharged polyion could be quantified which, for the first time, allowed the experimental investigation of the effect of electrostatic interaction prior and during polyion collapse. Given that the Manning parameter M for QPVP4.3 is as low as lB / c = 0.6 (lB the Bjerrum length and c the mean contour distance between two charges), no counterion binding should occur. However the Walden product reduces with first addition of non solvent and accelerates when the structural collapse sets in. Since the dielectric constant of the solvent remains virtually constant during the chain collapse, the counterion binding is entirely caused by the reduction in the polyion chain dimension. The collapse is shifted to lower wns with higher degrees of quaternization as the samples QPVP20 and QPVP35 show (M = 2.8 respectively 4.9). The combination of light scattering and conductivity measurement revealed for the first time that polyion chains already collect their counter ions well above the theta-dimension when the dimensions start to shrink. Due to only small amounts of screening salt, strong electrostatic interactions bias dynamic as well as static light scattering measurements. An extended Zimm formula was derived to account for this interaction and to obtain the real chain dimensions. The effective degree of dissociation g could be obtained semi quantitatively using this extrapolated static in combination with conductivity measurements. One can conclude the expansion factor a and the effective degree of ionization of the polyion to be mutually dependent. In the good solvent regime g of QPVP4.3, QPVP20 and QPVP35 exhibited a decreasing value in the order 1 > g4.3 > g20 > g35. The low values of g for QPVP20 and QPVP35 are assumed to be responsible for the prior collapse of the higher quaternized samples. Collapse theory predicts dipole-dipole attraction to increase accordingly and even predicts a collapse in the good solvent regime. This could be exactly observed for the QPVP35 sample. The experimental results were compared to a newly developed theory of uniform spherical collapse induced by concomitant counterion binding developed by M. Muthukumar and A. Kundagrami. The theory agrees qualitatively with the location of the phase boundary as well as the trend of an increasing expansion with an increase of the degree of quaternization. However experimental determined g for the samples QPVP4.3, QPVP20 and QPVP35 decreases linearly with the degree of quaternization whereas this theory predicts an almost constant value.
Resumo:
This work presents the results of theoretical and experimental characterization of thermodynamic, mechanical and transport properties in polymer solvent systems. The polymer solvent pairs considered ranged to those in which the polymer is rubbery, to those in which the initially glassy polymeric matrix is plasticized by the action of the low molecular weight species. Advanced Equation of State models have been adopted for thermodynamic modeling,along with a rigorous procedure that enables to extend their applicability to the non equilibrium, glassy region. Mass sorption kinetics had been modeled with phenomenological models and with advanced kinetic models.
Resumo:
In this thesis, different complex colloids were prepared by the process of solvent evaporation from emulsion droplets (SEED). The term “complex” is used to include both an addressable functionality as well as the heterogeneous nature of the colloids.Firstly, as the SEED process was used throughout the thesis, its mechanism especially in regard to coalescence was investigated,. A wide variety of different techniques was employed to study the coalescence of nanodroplets during the evaporation of the solvent. Techniques such as DLS or FCS turned out not to be suitable methods to determine droplet coalescence because of their dependence on dilution. Thus, other methods were developed. TEM measurements were conducted on mixed polymeric emulsions with the results pointing to an absence of coalescence. However, these results were not quantifiable. FRET measurements on mixed polymeric emulsions also indicated an absence of coalescence. Again the results were not quantifiable. The amount of coalescence taking place was then quantified by the application of DC-FCCS. This method also allowed for measuring coalescence in other processes such as the miniemulsion polymerization or the polycondensation reaction on the interface of the droplets. By simulations it was shown that coalescence is not responsible for the usually observed broad size distribution of the produced particles. Therefore, the process itself, especially the emulsification step, needs to be improved to generate monodisperse colloids.rnThe Janus morphology is probably the best known among the different complex morphologies of nanoparticles. With the help of functional polymers, it was possible to marry click-chemistry to Janus particles. A large library of functional polymers was prepared by copolymerization and subsequent post-functionalization or by ATRP. The polymers were then used to generate Janus particles by the SEED process. Both dually functionalized Janus particles and particles with one functionalized face could be obtained. The latter were used for the quantification of functional groups on the surface of the Janus particles. For this, clickable fluorescent dyes were synthesized. The degree of functionality of the polymers was found to be closely mirrored in the degree of functionality of the surface. Thus, the marriage of click-chemistry to Janus particles was successful.Another complex morphology besides Janus particles are nanocapsules. Stimulus-responsive nanocapsules that show triggered release are a highly demanding and interesting system, as nanocapsules have promising applications in drug delivery and in self-healing materials. To achieve heterogeneity in the polymer shell, the stimulus-responsive block copolymer PVFc-b-PMMA was employed for the preparation of the capsules. The phase separation of the two blocks in the shell of the capsules led to a patchy morphology. These patches could then be oxidized resulting in morphology changes. In addition, swelling occurred because of the hydrophobic to hydrophilic transition of the patches induced by the oxidation. Due to the swelling, an encapsulated payload could diffuse out of the capsules, hence release was achieved.The concept of using block copolymers responsive to one stimulus for the preparation of stimulus-responsive capsules was extended to block copolymers responsive to more than one stimulus. Here, a block copolymer responsive to oxidation and a pH change as well as a block copolymer responsive to a pH change and temperature were studied in detail. The release from the nanocapsules could be regulated by tuning the different stimuli. In addition, by encapsulating stimuli-responsive payloads it was possible to selectively release a payload upon one stimulus but not upon the other one.In conclusion, the approaches taken in the course of this thesis demonstrate the broad applicability and usefulness of the SEED process to generate complex colloids. In addition, the experimental techniques established such as DC-FCCS will provide further insight into other research areas as well.