959 resultados para Relation structure-fonction
Resumo:
Arabinogalactan proteins (AGPs) are proteoglycans of higher plants, which are implicated in growth and development. We recently have shown that two AGPs, NaAGP1 (from Nicotiana alata styles) and PcAGP1 (from Pyrus communis cell suspension culture), are modified by the addition of a glycosylphosphatidylinositol (GPI) anchor. However, paradoxically, both AGPs were buffer soluble rather than membrane associated. We now show that pear suspension cultured cells also contain membrane-bound GPI-anchored AGPs. This GPI anchor has the minimal core oligosaccharide structure, d-Manα(1–2)-d-Manα(1–6)-d-Manα(1–4)-d-GlcN-inositol, which is consistent with those found in animals, protozoa, and yeast, but with a partial β(1–4)-galactosyl substitution of the 6-linked Man residue, and has a phosphoceramide lipid composed primarily of phytosphingosine and tetracosanoic acid. The secreted form of PcAGP1 contains a truncated GPI lacking the phosphoceramide moiety, suggesting that it is released from the membrane by the action of a phospholipase D. The implications of these findings are discussed in relation to the potential mechanisms by which GPI-anchored AGPs may be involved in signal transduction pathways.
Resumo:
ADP ribosylation factor (ARF) is thought to play a critical role in recruiting coatomer (COPI) to Golgi membranes to drive transport vesicle budding. Yeast strains harboring mutant COPI proteins exhibit defects in retrograde Golgi to endoplasmic reticulum protein transport and striking cargo-selective defects in anterograde endoplasmic reticulum to Golgi protein transport. To determine whether arf mutants exhibit similar phenotypes, the anterograde transport kinetics of multiple cargo proteins were examined in arf mutant cells, and, surprisingly, both COPI-dependent and COPI-independent cargo proteins exhibited comparable defects. Retrograde dilysine-mediated transport also appeared to be inefficient in the arf mutants, and coatomer mutants with no detectable anterograde transport defect exhibited a synthetic growth defect when combined with arf1Δ, supporting a role for ARF in retrograde transport. Remarkably, we found that early and medial Golgi glycosyltransferases localized to abnormally large ring-shaped structures. The endocytic marker FM4–64 also stained similar, but generally larger ring-shaped structures en route from the plasma membrane to the vacuole in arf mutants. Brefeldin A similarly perturbed endosome morphology and also inhibited transport of FM4–64 from endosomal structures to the vacuole. Electron microscopy of arf mutant cells revealed the presence of what appear to be hollow spheres of interconnected membrane tubules which likely correspond to the fluorescent ring structures. Together, these observations indicate that organelle morphology is significantly more affected than transport in the arf mutants, suggesting a fundamental role for ARF in regulating membrane dynamics. Possible mechanisms for producing this dramatic morphological change in intracellular organelles and its relation to the function of ARF in coat assembly are discussed.
Resumo:
Objectives: To assess the relation between white coat hypertension and alterations of left ventricular structure and function.
Resumo:
The Drosophila mutant methuselah (mth) was identified from a screen for single gene mutations that extended average lifespan. Mth mutants have a 35% increase in average lifespan and increased resistance to several forms of stress, including heat, starvation, and oxidative damage. The protein affected by this mutation is related to G protein-coupled receptors of the secretin receptor family. Mth, like secretin receptor family members, has a large N-terminal ectodomain, which may constitute the ligand binding site. Here we report the 2.3-Å resolution crystal structure of the Mth extracellular region, revealing a folding topology in which three primarily β-structure-containing domains meet to form a shallow interdomain groove containing a solvent-exposed tryptophan that may represent a ligand binding site. The Mth structure is analyzed in relation to predicted Mth homologs and potential ligand binding features.
Resumo:
The folding mechanism of a 125-bead heteropolymer model for proteins is investigated with Monte Carlo simulations on a cubic lattice. Sequences that do and do not fold in a reasonable time are compared. The overall folding behavior is found to be more complex than that of models for smaller proteins. Folding begins with a rapid collapse followed by a slow search through the semi-compact globule for a sequence-dependent stable core with about 30 out of 176 native contacts which serves as the transition state for folding to a near-native structure. Efficient search for the core is dependent on structural features of the native state. Sequences that fold have large amounts of stable, cooperative structure that is accessible through short-range initiation sites, such as those in anti-parallel sheets connected by turns. Before folding is completed, the system can encounter a second bottleneck, involving the condensation and rearrangement of surface residues. Overly stable local structure of the surface residues slows this stage of the folding process. The relation of the results from the 125-mer model studies to the folding of real proteins is discussed.
Resumo:
Cell structure, emerging from behind the veil of conventional electron microscopy, appears far more complex than formerly realized. The standard plastic-embedded, ultrathin section can image only what is on the section surface and masks the elaborate networks of the cytoplasm and nucleus. Embedment-free electron microscopy gives clear, high-contrast micrographs of cell structure when combined with removal of obscuring material such as soluble proteins. The resinless ultrathin section is the technique of choice; it is simple and inexpensive, and it uses ordinary electron microscopes. The resulting pictures reveal a world of complex cell structure and function. These images necessarily change our conception of the cytoskeleton, nuclear matrix, mitosis, and the relation of membranes to cytostructure.
Resumo:
Most helicases studied to date have been characterized as oligomeric, but the relation between their structure and function has not been understood. The bacteriophage T7 gene 4 helicase/primase proteins act in T7 DNA replication. We have used electron microscopy, three-dimensional reconstruction, and protein crosslinking to demonstrate that both proteins form hexameric rings around single-stranded DNA. Each subunit has two lobes, so the hexamer appears to be two-tiered, with a small ring stacked on a large ring. The single-stranded DNA passes through the central hole of the hexamer, and the data exclude substantial wrapping of the DNA about or within the protein ring. Further, the hexamer binds DNA with a defined polarity as the smaller ring of the hexamer points toward the 5' end of the DNA. The similarity in three-dimensional structure of the T7 gene 4 proteins to that of the Escherichia coli RuvB helicase suggests that polar rings assembled around DNA may be a general feature of numerous hexameric helicases involved in DNA replication, transcription, recombination, and repair.
Resumo:
Le sujet de la présente étude est la violence scolaire, phénomène complexe et polysémique qui préoccupe légitimement le monde de l’éducation depuis plus de trente ans. À partir des analyses factorielles exploratoires, analyses de variance factorielle et finalement analyses multivariées de covariance, cette recherche vise plus précisément à dégager la relation entre le climat scolaire, le contexte scolaire et les différents rôles adoptés par les élèves du niveau secondaire lors d’une situation de violence scolaire. Les données de la présente étude ont été collectées par Michel Janosz et son équipe pendant l’année 2010, dans quatre établissements éducatifs provenant d’une commission scolaire de la grande région de Montréal. L’échantillon de départ est composé de 1750 élèves qui fréquentent des classes ordinaires et spéciales du premier et deuxième cycle du secondaire âgés entre 10 et 18 ans. Pour fins d’analyse, deux petites écoles ainsi que les classes spéciales ont été retirées. Il demeure donc 1551 élèves dans l’échantillon initial analysé. Les résultats des analyses permettent de constater d’une part, la relation significative existante entre les dimensions du climat scolaire et l’adoption des différents rôles lors d’une situation de violence scolaire, les climats d’appartenance et de sécurité étant les plus importants, et d’autre part d’observer des différences dans les perceptions que les élèves ont de la violence scolaire selon le niveau et selon l’école.
Resumo:
Le sujet de la présente étude est la violence scolaire, phénomène complexe et polysémique qui préoccupe légitimement le monde de l’éducation depuis plus de trente ans. À partir des analyses factorielles exploratoires, analyses de variance factorielle et finalement analyses multivariées de covariance, cette recherche vise plus précisément à dégager la relation entre le climat scolaire, le contexte scolaire et les différents rôles adoptés par les élèves du niveau secondaire lors d’une situation de violence scolaire. Les données de la présente étude ont été collectées par Michel Janosz et son équipe pendant l’année 2010, dans quatre établissements éducatifs provenant d’une commission scolaire de la grande région de Montréal. L’échantillon de départ est composé de 1750 élèves qui fréquentent des classes ordinaires et spéciales du premier et deuxième cycle du secondaire âgés entre 10 et 18 ans. Pour fins d’analyse, deux petites écoles ainsi que les classes spéciales ont été retirées. Il demeure donc 1551 élèves dans l’échantillon initial analysé. Les résultats des analyses permettent de constater d’une part, la relation significative existante entre les dimensions du climat scolaire et l’adoption des différents rôles lors d’une situation de violence scolaire, les climats d’appartenance et de sécurité étant les plus importants, et d’autre part d’observer des différences dans les perceptions que les élèves ont de la violence scolaire selon le niveau et selon l’école.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
There is no specific self-efficacy measure that has been developed primarily for problem drinkers seeking a moderation drinking goal. In this article, we report the factor structure of a 20-item Controlled Drinking Self-Efficacy Scale (CDSES Sitharthan et al., 1996; Sitharthan et al., 1997). The results indicate that the CDSES is highly reliable, and the factor analysis using the full sample identified four factors: negative affect, positive mood/social context, frequency of drinking, and consumption quantity. A similar factor structure was obtained for the subsample of men. In contrast, only three factors emerged in the analysis of data on female participants. Compared to women, men had low self-efficacy to control their drinking in situations relating to positive mood/social context, and subjects with high alcohol dependence had low self-efficacy for situations relating to negative affect, social situations, and drinking less frequently. The CDSES can be a useful measure in treatment programs providing a moderation drinking goal. (C) 2003 Wiley Periodicals, Inc.
Resumo:
A simulation-based modelling approach is used to examine the effects of stratified seed dispersal (representing the distribution of the majority of dispersal around the maternal parent and also rare long-distance dispersal) on the genetic structure of maternally inherited genomes and the colonization rate of expanding plant populations. The model is parameterized to approximate postglacial oak colonization in the UK, but is relevant to plant populations that exhibit stratified seed dispersal. The modelling approach considers the colonization of individual plants over a large area (three 500 km x 10 km rolled transects are used to approximate a 500 km x 300 km area). Our approach shows how the interaction of plant population dynamics with stratified dispersal can result in a spatially patchy haplotype structure. We show that while both colonization speeds and the resulting genetic structure are influenced by the characteristics of the dispersal kernel, they are robust to changes in the periodicity of long-distance events, provided the average number of long-distance dispersal events remains constant. We also consider the effects of additional physical and environmental mechanisms on plant colonization. Results show significant changes in genetic structure when the initial colonization of different haplotypes is staggered over time and when a barrier to colonization is introduced. Environmental influences on survivorship and fecundity affect both the genetic structure and the speed of colonization. The importance of these mechanisms in relation to the postglacial spread and genetic structure of oak in the UK is discussed.
Resumo:
The effect of soil puddling on growth of lowland rice (Oryza sativa) and post-rice mungbean (Vigna radiata) was investigated using mini rice beds under controlled glasshouse conditions. Each mini rice bed was approximately 1 m(3) in size. Three different soil types were used: a well-drained, permeable loam; a hardsetting, structurally unstable silty loam; and a medium clay. Rice yields were reduced by low puddling compared with high puddling intensity on the loam but not affected on the heavier textured soils (silty loam and clay). Yield of mungbean was reduced on highly puddle, structurally unstable soil, indicating that puddling should be reduced on structurally unstable soils. Under glasshouse condition where crop establishment was not a limiting factor and plant available water in 0.65 m of soil was 100 mm, mungbean yields of >1 t/ha were achieved. However, under conditions where subsoil water reserves were depleted for the production of vegetative biomass during initial optimal growing condition, grain yield remained well below 1 t/ha.
Resumo:
Girls who grow up in households with an unrelated adult male reach menarche earlier than peers, a finding hypothesized to be an evolutionary strategy for families under stress. The authors tested the alternative hypothesis that nonrandom selection into stepfathering due to shared environmental and/or genetic predispositions creates a spurious relation between stepfathering and early menarche. Using the unique controls for genetic and shared environmental experiences offered by the children-of-twins design, the authors found that cousins discordant for stepfathering did not differ in age of menarche. Moreover, controlling for mother's age of menarche eliminated differences in menarcheal age associated with stepfathering in unrelated girls. These findings strongly suggest selection, and not causation, accounts for the relationship between stepfathering and early menarche.
Resumo:
The synthesis, characterization and thermal behaviour of some new dimeric allylpalladium (II) complexes bridged by pyrazolate ligands are reported. The complexes [Pd(mu-3, 5-R'(2)pz)(eta(3)-CH2C(R)CH2)](2) [R = H; R'= CH(CH3)(2) (1a); R = H, R' = C(CH3)(3) (1b), R = H; R' = CF3 (1c); R = CH3, R' = CH(CH3)(2) (2a); R = CH3, R' = C(CH3)(3) (2b); and R = CH3, R' = CF3 (2c)] have been prepared by the room temperature reaction of [Pd(eta(3)-CH2C(R)CH2)(acac)](acac = acetylacetonate) with 3,5-disubstituted pyrazoles in acetonitrile solution. The complexes have been characterized by NMR (H-1, C-13{H-1}), FT-IR, and elemental analyses. The structure of a representative complex, viz. 2c, has been established by single-crystal X-ray diffraction. The dinuclear molecule features two formally square planar palladium centres which are bridged by two pyrazole ligands and the coordination of each metal centre is completed by allyl substituents. The molecule has non-crystallographic mirror symmetry. Thermogravimetric studies have been carried out to evaluate the thermal stability of these complexes. Most of the complexes thermally decompose in argon atmosphere to give nanocrystals of palladium, which have been characterized by XRD, SEM and TEM. However, complex 2c can be sublimed in vacuo at 2 mbar without decomposition. The equilibrium vapour pressure of 2c has been measured by the Knudsen effusion technique. The vapour pressure of the complex 2c could be expressed by the relation: In (p/Pa)(+/- 0.06) = -18047.3/T + 46.85. The enthalpy and entropy of vapourization are found to be 150.0 +/- 3 kJ mol(-1) and 389.5 +/- 8 J K-1 mol(-1), respectively. (c) 2005 Elsevier B.V. All rights reserved.