958 resultados para Quantum Hall effect


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Photoluminescence from a GaN0.015As0.985/GaAs quantum well has been measured at 15 K under hydrostatic pressure up to 9 GPa. Both the emissions from the GaNAs well and GaAs barrier are observed. The GaNAs-related peak shows a much weaker pressure dependence compared to that of the GaAs band gap. A group of new peaks appear in the spectra when the pressure is beyond 2.5 GPa, which is attributed to the emissions from the N isoelectronic traps in GaAs. The pressure dependence of the GaNAs-related peaks was calculated using the two-level model with the measured pressure coefficients of the GaAs band gap and N level as fitting parameters. It is found that the calculated results deviate seriously from the experimental data. An increasing of the emission intensity and the linewidth of the GaNAs-related peaks was also observed and briefly discussed. (C) 2001 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have studied the capacitance-voltage characteristics of an optically excited wide quantum well. Both self-consistent simulations and experimental results show the striking quantum contribution to the capacitance near zero bias which is ascribed to the swift decreasing of the overlap between the electron and hole wave functions in the well as the longitudinal field goes up. This quantum capacitance feature is regarded as an electrical manifestation of the quantum-confined Stark effect.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the effect of InchiGa1-chiAs (0 less than or equal to chi less than or equal to0.4) capping layer on photoluminescence (PL) properties of 1.3 mum wavelength self-assembled InAs quantum islands, which are formed via depositing 3.5 monolayers (ML) InAs on GaAs (1 0 0) substrate by molecular beam epitaxy (MBE). Compared with the InchiGa1-chiAs capping layer containing a larger In mole fraction chi greater than or equal to0.2 and the GaAs capping layer (chi = 0), the InAs islands covered by the In0.1Ga0.9As layer show PL with lower emission energy, narrower full-width at half-maximum (FWHM), and quite stronger intensity. The PL peak energy and FWHM become more temperature dependent with the increase of In content in the InchiGa1-chiAs capping layer (chi greater than or equal to0.2), while the InAs islands covered by the In0.1Ga0.9As layer is much less temperature sensitive. In addition, the InAs islands covered by the In0.1Ga0.9As capping layer show room temperature PL wavelength at about 1.3 mum. (C) 2001 Published by Elsevier Science B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of ion-induced damage on GaNAs/GaAs quantum wells (QWs) grown by molecular beam epitaxy employing a DC plasma as the N source was investigated. Ion-induced damage results in: (i) an observed disappearance of pendellosung fringes in the X-ray diffraction pattern of the sample; (ii) a drastic decrease in intensity and a broadening in the full-width at half-maximum of photoluminescence spectra. It was shown that ion-induced damage strongly affected the bandedge potential fluctuations of the QWs. The bandedge potential fluctuations for the samples grown with and without ion removal magnets (IRMs) are 44 and 63 meV, respectively. It was found that the N-As atomic interdiffusion at the interfaces of the QWs was enhanced by the ion damage-induced defects. The estimated activation energies of the N-As atomic interdiffusion for the samples grown with and without IRMs are 3.34 and 1.78 eV, respectively. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have studied the effect of rapid thermal annealing (RTA) on GaInNAs/GaAs quantum wells (QWs) grown by molecular-beam epitaxy using a dc plasma as the N source. It was found that RTA at low temperature (LT, 650 degrees C) and high temperature (HT, 900 degrees C) could both improve the QW quality significantly. To clarify the mechanism of quality improvement by RTA, a magnetic field perpendicular to the path of the N plasma flux was applied during the growth of the GaInNAs layers for the sake of comparison. It was found that LT-RTA mainly removed dislocations at interfaces related to the ion bombardment, whereas, HT-RTA further removed dislocations originating from the growth. LT-RTA caused only a slight blueshift of photoluminescence peak wavelength, probably due to defect-assisted interdiffusion of In-Ga at the QW interfaces. The blueshift caused by HT-RTA, on the other hand, was much larger. It is suggested that this is due to the fast defect-assisted diffusion of N-As at the QW interfaces. As defects are removed by annealing, the diffusion of In-Ga at interfaces would be predominant. (C) 2000 American Institute of Physics. [S0003- 6951(00)01535-7].

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have studied the optical and structural properties of InAs/GaAs QDs covered by InxGa1-xAs (0 less than or equal to x less than or equal to 0.3) layer using transmission electron microscopy, photoluminescence (PL) spectra and atomic force microscopy. We find that the strain reduces in the growth direction of InAs islands covered by InGaAs instead of GaAs layer. Significant redshift of PL peak energy and narrowing of PL linewidth are observed for the InAs QDs covered by 3 nm thick InGaAs layer. In addition, atomic force microscopy measurements indicate that the InGaAs islands will nucleate on top of InAs quantum dots, when 3 nm In0.3Ga0.7As overgrowth layer is deposited. This result can well explain the PL intensify degradation and linewidth increment of quantum dots with a higher In-mole-fraction InGaAs layer. The energy gap change of InAs QDs covered by InGaAs may be explained in terms of reducing strain, suppressing compositional mixing and increasing island height. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have studied the effect of rapid thermal annealing (RTA) on highly strained InGaAs/GaAs quantum wells by using photoluminescence (PL) and double-crystal X-ray diffraction (DCXRD) measurements. It is found that a distinct additional PL emission peak can be observed for the annealed samples. This PL emission possesses features similar to the PL emission from InGaAs/GaAs quantum dots (QDs) with the same indium content. It is proposed that this emission stems from QDs, which were formed during the annealing process. This formation is attributed to the favorable diffusion due to the inhomogeneous strain distribution in the InGaAs layer intersurface. The DCXRD measurements also confirm that the dominant relaxation is strain enhanced diffusion under the low annealing temperatures. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Postgrowth rapid thermal annealing was performed on InGaAs/GaAs quantum dots grown by molecular beam epitaxy. The blue shift of the emission peak and the narrowing of the luminescence line width are observed at lower annealing temperature. However, when the annealing temperature is increased to 850 degrees C, the emission line width becomes larger. The TEM image of this sample shows that the surface becomes rough, and some large clusters are formed, which is due to the interdiffusion of In, Ga atoms at the InGaAs/GaAs interface and to the strain relaxation. The material is found to degrade dramatically when the annealing temperature is further increased to 900 degrees C, while emission from quantum dots can still be detected, along with the appearance of the emission from excited state. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electron cyclotron resonance (CR) has been studied in magnetic fields up to 32 T in two heavily modulation-delta-doped GaAs/Al0.3Ga0.7As single quantum well samples. Little effect on electron CR is observed in either sample in the region of resonance with the GaAs LO phonons. However, above the LO-phonon frequency energy E-LO at B > 27 T, electron CR exhibits a strong avoided-level-crossing splitting for both samples at energies close to E-LO + (E-2 - E-1), where E-2, and E-1 are the energies of the bottoms of the second and the first subbands, respectively. The energy separation between the two branches is large, reaching a minimum of about 40 cm(-1) around 30.5 T for both samples. This splitting is due to a three-level resonance between the second LI, of the first electron subband and the lowest LL of the second subband plus an LO phonon. The large splitting in the presence: of high electron densities is due to the absence of occupation (Pauli-principle) effects in the final states and weak screening for this three-level process. (C) 2000 Published by Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The energy barrier at InAs/GaAs interface due to the built-in strain in self-organized system has been determined experimentally. Such a barrier has been predicted by previous theories. From the deep-level transient spectroscopy (DLTS) measurements, we have obtained the electron and hole energy levels of quantum dots E-e(QD-->GaAs) = 0.13 eV and E-h(QD-->GaAs) = 0.09 eV relative to the bulk unstrained GaAs band edges E-c and E-v. DLTS measurements have also provided evidence to the existence of the capture barriers of quantum dots for electron E-eB = 0.30 eV and hole E-hB = 0.26 eV. The barriers can be explained by the apexes appearing in the interface between InAs and GaAs caused by strain. Combining the photoluminescence results, the band structures of InAs and GaAs have been determined.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The photoluminescence in directly si-doped self-organized InAs quantum dots was systematically studied. With doping, a decrease in linewidth and a little blue shift in peak were observed by PL measurement. The results show that direct doping when growing InAs layer may be helpful to the formation of uniform small quantum dots. The work will be meaningful for the fabrication of self-organized InAs quantum dots semiconductor device.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The strain effect on the band structure of InAs/GaAs quantum dots has been investigated. 1 mu m thick InGaAs cap layer was added onto the InAs quantum dot layer to modify the strain in the quantum dots. The exciton energies of InAs quantum dots before and after the relaxation of the cap layer were determined by photoluminescence. When the epilayer was lifted off from the substrate by etching away the sacrifice layer (AlAs) by HF solution, the energy of exciton in the quantum dots decreases due to band gap narrowing resulted from the strain relaxation. This method can be used to obtain much longer emission wavelength from InAs quantum dots.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Low-temperature photoluminescence studies have been performed on Si-doped and Be-doped self-organized InAs/GaAs quantum dot (QD) samples to investigate the effect of doping. When Si or Be is doped into the sample, a remarkable decrease in line-width is observed. We relate this phenomenon to a model that takes the Si or Be atoms as the nucleation centers for the formation of QDs. When Si or Be is doped, more small uniform quantum dots are formed. The result will be of significance for the application of self-organized InAs quantum dots in semiconductor devices.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In situ ultra high vacuum scanning probe microscopy (SPM) and low-temperature :photoluminescence (PL) studies have been performed on Si-doped self-organized InAs/GaAs quantum dots samples to investigate the Si doping effects. Remarkably, when Si is doped in the sample, according to the SPM images, more small dots are formed when compared with images from undoped samples. On the PL spectra, high-energy band tail which correspond to the small dots appear, with increasing doping concentration, the integral intensity of the high-energy band tail account for the whole peak increase too. We relate this phenomenon to a model that takes the Si atom as the nucleation center for QDs formation. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of growth interruption (GI) on the optical properties of InAs/GaAs quantum dots was investigated by cw and time-resolved photoluminescence (PL). It is found that this effect depends very much on the growth conditions, in particular, the growth rate. In the case of low growth rate, we have found that the GI may introduce either red-shift or blue-shift in PL with increase of the interruption lime, depending on the InAs thickness. The observed red shift in our 1.7 monolayer (ML) sample is attributed to the evolution of the InAs islands during the growth interruption. While the blue-shift in the 3 ML sample is suggested to be mainly caused by the strain effect. In addition, nearly zero shift was observed for the sample with thickness around 2.5 ML, (C) 1999 Elsevier Science Ltd. All rights reserved.