669 resultados para Propylene epoxidation
Resumo:
The effect of accelerated weather aging an ethylene-propylene-diene monomer(EPDM) rubber used for outdoor insulation was studied by surface roughness measurement and X-ray photoelectron spectroscopy(xps). The surface roughness of EPDM rubber changed with aging time. The surface oxygen and aluminum content were found to increase and that of carbon, silicon and nitrogen to decrease with time. The detailed XPS analysis indicated that the concentration of carbon in C-C decreased and that of highly oxidized carbons in C-O, C=O and O=C-O increased with time, which was due to the oxidation of EPDM rubber polymer. The appearance of O=C-O on the surface of EPDM rubber was a signal that EPDM rubber became aged. The aging speed decreased with time. The aging mechanism is discussed also.
Resumo:
Cp2SmCl(THF) reacts with 0.5 equivalent disodium salts of trans-(+/-)-N,N'-bis(salicylidene)-1,2-cyclohexanediamine give the title complex [(eta(5)-C5H5)Sm(mu-OC20H20N2O)](2)(mu-THF)(THF)(2) (1). X-ray crystal determination shows that the molecule is a dimer, in which two (eta(5)C(5)H(5))Sm(mu-OC20H20N2O) units are connected via a THF oxygen and two bridging oxygen atoms of Schiff base ligands. The average Sm-C distance is 2.78(7) Angstrom, while those of Sm-O (bridging THF oxygen) and Schiff base oxygens are 2.79(3) and 2.43(4) Angstrom; respectively. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Ethylene polymerization by zirconocene-B(C6F5)(3) catalysts with various aluminum compounds has been investigated. It is found that the catalytic activity depended on zirconocenes used, and especially on the type of aluminum compounds. For Et(H(4)Ind)(2)ZrCl2 (H(4)Ind : tetrahydroindenyl), the activity decreases in the following order: Me3Al > i-Bu3Al > Et3Al much greater than Et2AlCl. While for Cp2ZrCl2(Cp : cyclopentadienyl), it varies as follows: i-Bu3Al > Me3Al much greater than Et3Al. Furthermore, the activity is significantly affected by the addition mode of the catalytic components, which may imply that the formation of active centers is associated with an existing concentration of catalytic components. Results of thermal behavior of polyethylene (PE) studied by differential scanning calorimetry(DSC) show that crystallinity of the polymer prepared with Et3Al is higher than that with Me3Al or i-Bu3Al. It is also found that the number-average molecular weight ((M) over bar) of the polymers prepared with Me3Al or i-Bu3Al is much higher than that with Et3Al. H-1-NMR studies substantiate that i-Bu3Al is a more efficient alkylation agent of Cp2ZrCl2 in comparison with Me3Al. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Using a molal conductance method, ion solvation and ion association in polytriethylene glycol dimethacrylate (PTREGD)-LiClO4 gel electrolytes with amorphous ethylene oxide-co-propylene oxide (EO-co-PO, <(M)over bar (n)>, = 1750) as the plasticizer were investigated. It was found that the fraction of solute existing as single ions (alpha(i)) and ion pairs (alpha(p)) decreases, while that of triple ions (alpha(t)) increases linearly with increasing salt concentration. The dependence of these fractions on molecular weight of plasticizer was also examined. It was shown that alpha(i) and alpha(t) increase and alpha(p) decreases with increasing molecular weight. The result of temperature dependence of these fractions was very interesting: when the temperature is lower than 55 degrees C, alpha(i) increases while alpha(p) and alpha(t) decrease with increasing temperature; however, when the temperature is higher than 55 degrees C, the reverse is true.
Resumo:
A variety of cokes pretreated at different temperatures are used as anodic materials and their electrochemical characteristics are examined by cyclic voltammetry. It is found that for some cokes such as petroleum coke (preheated at 1300 degrees C), pitch coke (1300 degrees C), needle coke (1900 degrees C), metallurgical coke (1900 degrees C), high capacity and cyclic efficiency are achieved. Needle coke (1900 degrees C) and metallurgical coke (1900 degrees C) in particular give a capacity of over 200 mAh/g and a cyclic efficiency of nearly 100%, whereas poor performance is exhibited by those pretreated at higher or lower temperatures, e.g., petroleum cokes (500 degrees C, 2800 degrees C), pitch coke (500 degrees C) and needle coke (2800 degrees C). The cyclic voltammograms show two electrochemical processes, one at about 0.1 V vs. Li+/Li which is electrochemically reversible, and may be attributed to the intercalation/deintercalation of lithium ions while the other, at about 0.6 V vs. Li+/Li, is electrochemically irreversible and may be assigned to the decomposition of the electrolyte solvent, which leads to formation of the passive film on the anode surface. The experimental results strongly suggest that the pretreatment temperature of cokes and of the solvent are determining factors for the growth, structure and properties of the passive film.
Resumo:
The rheological properties and crystallization characteristics of low ethylene content poly propylene (EPM) with and without Yittrium oxide (Y2O3) as a filler was investigated by cone-plate viscometer and differential scanning calorimetry. Yittrium oxide had a profound effect on the viscosities of the systems. To determine the nonisothermal crystallization rate of the materials, a new estimation method was used. From the results, we can conclude that Y2O3 acts as a nucleating agent, which increased the crystallization rate of the EPM. (C) 1996 John Wiley & Sons, Inc.
Resumo:
A new kind of polymer gel electrolyte which is composed of polytriethylene glycol dimethacrylate(PTREGD), propylene carbonate(PC) and LiPF6 has been prepared by thermal polymerization. The conductivity was measured as a function of temperature, and it was found that the Arrhenius equation was held very well through out the salt concentration studied. Maximum room temperature conductivity of 4.95 x 10(-4) S/cm, as well as a minimum activation energy value of 18.90 kJ/mol were obtained at the same salt concentration of 0.22 mol/L.
Resumo:
Polyurethane (PU) based on polyepichlorohydrin/poly(methyl methacrylate) (PECH/PMMA) interpenetrating polymer networks (IPNs) was synthesized by a simultaneous method. The effects of composition, hydroxyl group number of PECH, NCO/OH ratio and crosslinking agent content in IPNs were investigated in detail. Some other glycols, such as poly(ethylene glycol), poly(propylene glycol) and hydroxyl-terminated polybutadiene, were also used to obtain PU/PMMA IPNs. The interpenetrating and fracture behaviors of the IPNs are explained briefly.
Resumo:
Gel electrolytes were prepared by thermal polymerization of diethylene glycol dimethacrylate (DIEGD) or its copolymer with methoxy polyethylene glycol monomethacrylate, molecular weight 400 (PEM(400)), at a molar ratio of 3/1 in the presence of propylene carbonate (PC) and LiClO4. Conductivity was measured by impedance spectroscopy. It was found that the conductivity data follow the Arrhenius equation in the homopolymer gel system, while the VTF equation holds true in the copolymer gel system. An increase in conductivity was observed in the copolymer gel system. However, whether in the homopolymer or in the copolymer gel system, a maximum ambient temperature conductivity was found at a salt concentration near 1.50 mol/l. Further, the activation energy values calculated from Arrhenius plots for the homopolymer gel system tended to reach a minimum value with increasing salt concentration. (C) 1996 Elsevier Science Ltd
Resumo:
Gel electrolytes have been prepared by thermal polymerization of poly(polyethylene glycol dimethacrylate) (P(PEGD)) in the presence of propylene carbonate (PC) and alkali metal salts, such as LiClO4, LICF(3)SO(3) and LiBF4. The conductivity was studied by means of impedance spectroscopy, and it is found that the temperature dependence of conductivities follow a Arrhenius relationship when the molar percentage of PC is higher than 75% or LiClO4 concentration is lower than 0.9 mol/l. However, when LiCF3SO3 or LiBF4 is used instead of LiClO4 as the salt, the situation is different. For LICF(3)SO(3), the Arrhenius relationship almost holds true for all the salt concentrations studied; while for LiBF4, the Arrhenius equation hardly fits for any salt concentration. The dependence of activation energy on salt concentration is also examined, both for LiClO4 and LiCF3SO3, the values of E(a) tend to reach a minimum value with increasing salt concentration. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
The morphology and mechanical properties of polypropylene/high-density polyethylene (PP/HDPE) blends in a wide range of compositions modified by a sequential Ziegler-Natta polymerization product (PP-PE) have been investigated. PP-PE contains multiple components such as PP, ethylene-propylene copolymer (EPC), and high molecular weight polyethylene (HMWPE). The effects of PP-PE on the mechanical properties and morphology of the PP/HDPE blends are the aggregative results of all its individual components. Addition of PP-PE to the blends not only improved the tensile strength of the blends, but the elongation at break increased linearly while the moduli were nearly unchanged. Morphological studies show that the adhesion between the two phases in all the blends of different compositions is enhanced and the dispersed domain sizes of the blends are reduced monotonously with the increment of the content of PP-PE. PP-PE has been demonstrated to be a more effective compatibilizer than EPC. Based on these results, it can be concluded that the tensile strength of the blends depends most on the adhesion between the two phases and the elongation at break depends most on the domain size of the dispersed component. (C) 1995 John Wiley & Sons, Inc.
Resumo:
Aimed at raising the room temperature ionic conductivity of PEO-based solid polymer electrolyte and considered that the ionic conduction preferentially occurs in the amorphous phase, we lightly crosslinked the high MW PEO through gamma-irradiation and further suppressed the residual crystallinity by plasticizing with propylene carbonate. By incorporating LiClO4 salt to the above described polymer host, the ambient (25 degrees C) ionic conductivity of the electrolyte system could reach as high as 6.8 X 10(-4) S/cm. As the electrolyte was a crosslinked system, it was mechanically self-supportable. Based on the preliminary results of the electrochemical performance of the secondary lithium battery, assembled by using this kind of solid electrolyte and polyaniline as positive electrode, it is realized that the electrolyte thus prepared is of high expectancy.
Resumo:
The electrochemical and electrocatalytic properties of iron(III)-substituted Dawson-type tungstophosphate anion are described. The anion exhibits a one-electron couple associated with the Fe(III) center and two two-electron waves attributed to redox proce
Resumo:
Ethylene-propene copolymers (EPR) were synthesized at different feed compositions using a highly active and isospecific MgCl2-supported Ti-based catalyst. The thermal behavior of EPR was studied by differential scanning calorimetry, the heterogeneity by f