985 resultados para Photoluminescence properties


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The self-organization growth of In0.32Ga0.68As/GaAs quantum dots (QDs) superlattices is investigated by molecular beam epitaxy. It is found that high growth temperature and low growth rate are favorable for the formation of perfect vertically aligned QDs superlattices. The aspect ratio (height versus diameter) of QD increases from 0.16 to 0.23 with increase number of bi-layer. We propose that this shape change play a significant role to improve the uniformity of QDs superlattices. Features in the variable temperature photoluminescence characteristics indicate the high uniformity of the QDs. Strong infrared absorption in the 8-12 mum was observed. Our results suggest the promising applications of QDs in normal sensitive infrared photodetectors. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have fabricated self-organized InAs/GaAs quantum dots (QDs) capped by 1 nm In0.2Al0.8As and 5 nm In0.2Ga0.8As strain-reducing layer (SRL). The luminescence emission at a long wavelength of 1.33 mum with narrower half width is realized. A wider energy separation between the ground and first excited radiative transitions of up to 102meV was observed at room temperature. Furthermore, the comparative study proves that luminescence properties of InAs/GaAs QDs overgrown with combined InAlAs and InGaAs SRLs are much better than that of one capped with InGaAs or InAlAs SRL. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A theoretical model accounting for the macropolarization effects in wurtzite III-V nitrides quantum wells (QWs) is presented. Energy dispersions and exciton binding energies are calculated within the framework of effective-mass theory and variational approach, respectively. Exciton-associated transitions (EATs) are studied in detail. An energy redshift as high as 450 meV is obtained in Al0.25GaN0.75/GaN QWs. Also, the abrupt reduction of optical momentum matrix elements is derived as a consequence of quantum-confined Stark effects. EAT energies are compared with recent photoluminescence (PL) experiments and numerical coherence is achieved. We propose that it is the EAT energy, instead of the conduction-valence-interband transition energy that is comparable with the PL energy. To restore the reduced transition rate, we apply an external electric field. Theoretical calculations show that with the presence of the external electric field the optical matrix elements for EAT increase 20 times. (C) 2001 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The temperature-dependent photoluminescence (PL) properties of InAs/GaAs self-organized quantum dots (QDs) have been investigated at high excitation power. The fast redshift of the ground-state and the first excited-state PL energy with increasing temperature was observed. The temperature-dependent linewidth of the QD ground state with high carrier density is different from that with low carrier density. Furthermore, we observed an increasing PL intensity of the first excited state of QDs with respect to that of the ground state and demonstrate a local equilibrium distribution of carriers between the ground state and the first excited state for the QD ensemble at high temperature (T > 80 K). These results provide evidence for the slowdown of carrier relaxation from the first excited state to the ground state in InAs/GaAs quantum dots.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have fabricated a new self-assembled quantum dot system where InGaAs dots are formed on InAlAs wetting layer and embedded in GaAs matrix. The low-temperature photoluminescence and atomic force microscopy measurements confirm the realization of the structure. In contrast to traditional InAs/Ga(Al)As quantum dots, the temperature dependence of the photoluminescence of the dots in such a structure exhibits an electronically decoupled feature due to a higher energy level of the wetting layer which keeps the dots more isolated from each other. (C) 2001 Published by Elsevier Science B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A self-organized In0.5Ga0.5As/GaAs quantum island structure emitting at 1.35 mum at room temperature has been successfully fabricated by molecular beam epitaxy via cycled (InAs)(1)/GaAs)(1)monolayer deposition method. The photoluminescence measurement shows that a very narrow linewidth of 19.2 meV at 300 K has been reached for the first time, indicating effective suppression of inhomogeneous broadening of optical emission from the In0.5Ga0.5As island structure due to indium segregation reduction by introducing an AlAs layer and the strain reduction by inserting an In0.2Ga0.8As layer overgrown on the top of islands. The mound-like morphology of the islands elongated along the [1 (1) over bar0] azimuth are observed by the atomic force microscopy measurement, which reveals the fact that strain in the islands is partially relaxed along the [1 (1) over bar0] direction. Our results present important information for the fabrication of 1.3 mum wavelength quantum dot devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A CeO2 film with a thickness of about 80nm was deposited by a mass-analysed low-energy dual ion beam deposition technique on an Si(111) substrate. Reflection high-energy electron diffraction and x-ray diffraction measurements showed that the film is a single crystal. The tetravalent state of Ce in the film was confirmed by x-ray photoelectron spectroscopy measurements, indicating that stoichiometric CeO2 was formed. Violet/blue light emission (379.5 nm) was observed at room temperature, which may be tentatively explained by charge transitions from the 4f band to the valence band of CeO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

InAs and InxGa1-xAs (x = 0.2 and 0.5) self-organized quantum dots (QDs) were fabricated on GaAs(0 0 1) by molecular beam epitaxy (MBE) and characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM), acid photoluminescence polarization spectrum (PLP). Both structural and optical properties of InxGa1-xAs QD layer are apparently different from those of InAs QD layer. AFM shows that InxGa1-xAs QDs tend to be aligned along the [1 (1) over bar 0] direction, while InAs QDs are distributed randomly. TEM demonstrates that there is strain modulation along [1 1 0] in the InxGa1-xAs QD layers. PLP shows that In0.5Ga0.5As islands present optical anisotropy along [1 1 0] and [1 (1) over bar 0] due to structural and strain field anisotropy for the islands. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optical properties and the band lineup in GaNAs/GaAs single quantum wells (SQWs) grown by molecular beam epitaxy (MBE) using photoluminescence (PL) technique were investigated. It was found that the low-temperature PL is dominated by the intrinsic localized exciton emission. By fitting the experimental datawith a simple calculation, band offset of the GaN0.015As0.985/GaAs heterostructure was estimated. Moreover, DeltaE(c), the discontinuity of the conduction band was found to be a nonlinear function of the nitrogen composition (chi) and the average variation of DeltaE(c) is about 0. 110eV per % N, such smaller than that reported on the literature to (0.156 similar to 0.175 eV/N %). In addition, Qc has little change whtn N composition increares, with an experimential relation of QC approximate tox(0.25). The band bowing coefficient (b) was also studied in this paper. The measured band bowing coefficient shows a strong function of chi, giving an experimental support to the theoretic calculation of Wei Su-Huai and Zunger Alex (1996).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photoluminescence (PL) measurements were performed on several series of single-side Si-doped pseudomorphic high electron mobility transistors (p-HEMTs) quantum well (QW) samples, with different spacer layer widths, well widths and Si delta -doped concentrations , under different temperatures and excitation power densities. The dynamic competitive luminescence mechanism between the radiations of e2-hh1 and e1-hh1 was discussed in detail. The confining potential, subband energies, corresponding envelope functions, subband occupations and transferring efficiency etc., were calculated by self-consistent finite differential method at different temperatures in comparison with the present experiment results. The relative variation of the integrated luminescence intensity of the two transitions (e1-hh1 and e2-hh1) was found to be dependent on the temperature and the structure's properties, e. g. spacer layer width, dopant concentration and well width.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

InAs quantum dots (QDs) grown on GaAs surface are investigated. The observed abnormal photoluminescence (PL) properties, including extremely sharp high-energy peaks, almost temperature-independent linewidth, and fast thermal quenching, are discussed in terms of the strong quantum confinement effects due to the absence of a cap layer and the lack of carrier redistribution channel caused by the small number of QDs capable of contributing to PL and the high-density surface defects. (C) 2000 American Institute of Physics. [S0003-6951(00)01244-4].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical and structural properties of self-organized InAs/GaAs quantum dots (QDs) with InxGa1-xAs or GaAs cover layers grown by molecular beam epitaxy (MBE) have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and photoluminescence (PL) measurements. The TEM and AFM images show that the surface stress of the InAs QDs was suppressed by overgrowth of a InxGa1-xAs covering layer on the top of the QDs and the uniformity of the QDs preserved. PL measurements reveal that red shifts of the PL emission due to the reduction of the surface strain of the InAs islands was observed and the temperature sensitivity of the PL emission energy was suppressed by overgrowth of InxGa1-xAs layers compared to that by overgrowth of GaAs layers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical and structural investigations of InAs quantum dots (QDs) covered by InxGa1-xAs (0 less than or equal to x less than or equal to 0.3) overgrowth layer have been systematically reported. The decrease of strain in the growth direction of InAs quantum dots covered by InGaAs layer instead of GaAs is demonstrated by transmission electron microscopy experiments. In addition, the atomic force microscopy measurement shows that the surface of InAs islands with 3-nm-thick In0.2Ga0.8As becomes flatter. However, the InGaAs islands nucleate on the top of quantum dots during the process of InAs islands covered with In0.3Ga0.7As. The significant redshift of the photoluminescence peak energy and reduction of photoluminescence linewidth of InAs quantum dots covered by InGaAs are observed. The energy gap change of InAs QDs covered by InGaAs could be explained in terms of reducing strain, suppressing compositional mixing, and increasing island height. (C) 2000 American Institute of Physics. [S0021-8979(00)04018-4].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eu2+ doped ZnS nanocrystals exhibit new luminescence properties because of the enlarged energy gap of nanocrystalline ZnS host due to quantum confinement effects. Photoluminescence emission at about 520 nm from Eu2+ doped ZnS nanocrystals at room temperature is investigated by using photoluminescence emission and excitation spectroscopy. Such green emission with long lifetime (ms) is proposed to be a result of excitation, ionization, carriers recapture and recombination via Eu2+ centers in nanocrystalline ZnS host.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Manganese doped CdS nanoparticles were synthesized in basic aqueous solution by using mercapto acetate as capping reagents. The nanoparticles were characterized by HRTEM, EPR, photoluminescence and optical absorption measurements. Out of our expectation, doping of Mn2+ ions altered the recombination paths in CdS nanoparticles markedly. The surface stares facilitated PL from Mn2+ doped CdS nanoparticles is reported. A complete suppression of the emission from surface states at room temperature when doping with Mn2+ ions has been observed for the first time. (C) 2000 Elsevier Science Ltd. All rights reserved.