966 resultados para Permutation-Symmetric Covariance
Resumo:
Stabilizing selection has been predicted to change genetic variances and covariances so that the orientation of the genetic variance-covariance matrix (G) becomes aligned with the orientation of the fitness surface, but it is less clear how directional selection may change G. Here we develop statistical approaches to the comparison of G with vectors of linear and nonlinear selection. We apply these approaches to a set of male sexually selected cuticular hydrocarbons (CHCs) of Drosophila serrata. Even though male CHCs displayed substantial additive genetic variance, more than 99% of the genetic variance was orientated 74.9degrees away from the vector of linear sexual selection, suggesting that open-ended female preferences may greatly reduce genetic variation in male display traits. Although the orientation of G and the fitness surface were found to differ significantly, the similarity present in eigenstructure was a consequence of traits under weak linear selection and strong nonlinear ( convex) selection. Associating the eigenstructure of G with vectors of linear and nonlinear selection may provide a way of determining what long-term changes in G may be generated by the processes of natural and sexual selection.
Resumo:
In this study, we examined genetic and environmental influences on covariation among two reading tests used in neuropsychological assessment (Cambridge Contextual Reading Test [CCRT], [Beardsall, L., and Huppert, F. A. ( 1994). J. Clin. Exp. Neuropsychol. 16: 232 - 242], Schonell Graded Word Reading Test [SGWRT], [ Schonell, F. J., and Schonell, P. E. ( 1960). Diagnostic and attainment testing. Edinburgh: Oliver and Boyd.]) and among a selection of IQ subtests from the Multidimensional Aptitude Battery (MAB), [Jackson, D. N. (1984). Multidimensional aptitude battery, Ontario: Research Psychologists Press.] and the Wechsler Adult Intelligence Scale-Revised (WAIS-R) [Wechsler, D. (1981). Manual for the Wechsler Adult Intelligence Scale-Revised (WAIS-R). San Antonio: The Psychological Corporation]. Participants were 225 monozygotic and 275 dizygotic twin pairs aged from 15 years to 18 years ( mean, 16 years). For Verbal IQ subtests, phenotypic correlations with the reading tests ranged from 0.44 to 0.65. For Performance IQ subtests, phenotypic correlations with the reading tests ranged from 0.23 to 0.34. Results of Structural Equation Modeling (SEM) supported a model with one genetic General factor and three genetic group factors ( Verbal, Performance, Reading). Reading performance was influenced by the genetic General factor ( accounting for 13% and 20% of the variance for the CCRT and SGWRT, respectively), the genetic Verbal factor ( explaining 17% and 19% of variance for the CCRT and SGWRT), and the genetic Reading factor ( explaining 21% of the variance for both the CCRT and SGWRT). A common environment factor accounted for 25% and 14% of the CCRT and SGWRT variance, respectively. Genetic influences accounted for more than half of the phenotypic covariance between the reading tests and each of the IQ subtests. The heritabilities of the CCRT and SGWRT were 0.54 and 0.65, respectively. Observable covariance between reading assessments used by neuropsychologists to estimate IQ and IQ subtests appears to be largely due to genetic effects.
Resumo:
We present an efficient and robust method for the calculation of all S matrix elements (elastic, inelastic, and reactive) over an arbitrary energy range from a single real-symmetric Lanczos recursion. Our new method transforms the fundamental equations associated with Light's artificial boundary inhomogeneity approach [J. Chem. Phys. 102, 3262 (1995)] from the primary representation (original grid or basis representation of the Hamiltonian or its function) into a single tridiagonal Lanczos representation, thereby affording an iterative version of the original algorithm with greatly superior scaling properties. The method has important advantages over existing iterative quantum dynamical scattering methods: (a) the numerically intensive matrix propagation proceeds with real symmetric algebra, which is inherently more stable than its complex symmetric counterpart; (b) no complex absorbing potential or real damping operator is required, saving much of the exterior grid space which is commonly needed to support these operators and also removing the associated parameter dependence. Test calculations are presented for the collinear H+H-2 reaction, revealing excellent performance characteristics. (C) 2004 American Institute of Physics.
Resumo:
Potato type II serine proteinase inhibitors are proteins that consist of multiple sequence repeats, and exhibit a multidomain structure. The structural domains are circular permutations of the repeat sequence.. as a result or intramolecular domain swapping. Structural studies give indications for the origins of this folding behaviour, and the evolution of the inhibitor family.
Resumo:
Recursive filters are widely used in image analysis due to their efficiency and simple implementation. However these filters have an initialisation problem which either produces unusable results near the image boundaries or requires costly approximate solutions such as extending the boundary manually. In this paper, we describe a method for the recursive filtering of symmetrically extended images for filters with symmetric denominator. We begin with an analysis of symmetric extensions and their effect on non-recursive filtering operators. Based on the non-recursive case, we derive a formulation of recursive filtering on symmetric domains as a linear but spatially varying implicit operator. We then give an efficient method for decomposing and solving the linear implicit system, along with a proof that this decomposition always exists. This decomposition needs to be performed only once for each dimension of the image. This yields a filtering which is both stable and consistent with the ideal infinite extension. The filter is efficient, requiring less computation than the standard recursive filtering. We give experimental evidence to verify these claims. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Determining the dimensionality of G provides an important perspective on the genetic basis of a multivariate suite of traits. Since the introduction of Fisher's geometric model, the number of genetically independent traits underlying a set of functionally related phenotypic traits has been recognized as an important factor influencing the response to selection. Here, we show how the effective dimensionality of G can be established, using a method for the determination of the dimensionality of the effect space from a multivariate general linear model introduced by AMEMIYA (1985). We compare this approach with two other available methods, factor-analytic modeling and bootstrapping, using a half-sib experiment that estimated G for eight cuticular hydrocarbons of Drosophila serrata. In our example, eight pheromone traits were shown to be adequately represented by only two underlying genetic dimensions by Amemiya's approach and factor-analytic modeling of the covariance structure at the sire level. In, contrast, bootstrapping identified four dimensions with significant genetic variance. A simulation study indicated that while the performance of Amemiya's method was more sensitive to power constraints, it performed as well or better than factor-analytic modeling in correctly identifying the original genetic dimensions at moderate to high levels of heritability. The bootstrap approach consistently overestimated the number of dimensions in all cases and performed less well than Amemiya's method at subspace recovery.
Dual-symmetric Lagrangians in quantum electrodynamics: I. Conservation laws and multi-polar coupling
Resumo:
By using a complex field with a symmetric combination of electric and magnetic fields, a first-order covariant Lagrangian for Maxwell's equations is obtained, similar to the Lagrangian for the Dirac equation. This leads to a dual-symmetric quantum electrodynamic theory with an infinite set of local conservation laws. The dual symmetry is shown to correspond to a helical phase, conjugate to the conserved helicity. There is also a scaling symmetry, conjugate to the conserved entanglement. The results include a novel form of the photonic wavefunction, with a well-defined helicity number operator conjugate to the chiral phase, related to the fundamental dual symmetry. Interactions with charged particles can also be included. Transformations from minimal coupling to multi-polar or more general forms of coupling are particularly straightforward using this technique. The dual-symmetric version of quantum electrodynamics derived here has potential applications to nonlinear quantum optics and cavity quantum electrodynamics.
Resumo:
We have recently introduced the concept of whole-body asymmetric MRI systems [1]. In this theoretical study, we investigate the PNS characteristics of whole-body asymmetric gradient systems as compared to conventional symmetric systems. Recent experimental evidence [2] supports the hypothesis of transverse gradients being the largest contributor of PNS due to induced electric currents. Asymmetric head gradient coils have demonstrated benefits in the past [3]. The numerical results are based on an anatomically-accurate 2mm-human voxel-phantom NORMAN [4]. The results of this study can facilitate the optimization of whole-body asymmetric gradients in terms of patient comfort/safety (less PNS), while prospering the use of asymmetric MRI systems for in-vivo medical interventions.
Resumo:
Typical performance of low-density parity-check (LDPC) codes over a general binary-input output-symmetric memoryless channel is investigated using methods of statistical mechanics. The binary-input additive-white-Gaussian-noise channel and the binary-input Laplace channel are considered as specific channel noise models.
Resumo:
Using the magnetization enumerator method, we evaluate the practical and theoretical limitations of symmetric channels with real outputs. Results are presented for several regular Gallager code constructions.
Resumo:
Visualising data for exploratory analysis is a big challenge in scientific and engineering domains where there is a need to gain insight into the structure and distribution of the data. Typically, visualisation methods like principal component analysis and multi-dimensional scaling are used, but it is difficult to incorporate prior knowledge about structure of the data into the analysis. In this technical report we discuss a complementary approach based on an extension of a well known non-linear probabilistic model, the Generative Topographic Mapping. We show that by including prior information of the covariance structure into the model, we are able to improve both the data visualisation and the model fit.