Block GTM: Incorporating prior knowledge of covariance structure in data visualisation


Autoria(s): Schroeder, Martin; Nabney, Ian T.; Cornford, Dan
Data(s)

25/09/2008

Resumo

Visualising data for exploratory analysis is a big challenge in scientific and engineering domains where there is a need to gain insight into the structure and distribution of the data. Typically, visualisation methods like principal component analysis and multi-dimensional scaling are used, but it is difficult to incorporate prior knowledge about structure of the data into the analysis. In this technical report we discuss a complementary approach based on an extension of a well known non-linear probabilistic model, the Generative Topographic Mapping. We show that by including prior information of the covariance structure into the model, we are able to improve both the data visualisation and the model fit.

Formato

application/pdf

Identificador

http://eprints.aston.ac.uk/1410/1/NCRG_2008_006.pdf

Schroeder, Martin; Nabney, Ian T. and Cornford, Dan (2008). Block GTM: Incorporating prior knowledge of covariance structure in data visualisation. Technical Report. Aston University, Birmingham.

Publicador

Aston University

Relação

http://eprints.aston.ac.uk/1410/

Tipo

Monograph

NonPeerReviewed