608 resultados para Orbits
Resumo:
In this paper, numerical simulations are made, using the three-dimensional restricted three-body problem as the mathematical model, to calculate the effects of a swing-by with the planet Saturn in the orbit of a comet. To show the results, the orbit of the comet is classified in four groups: elliptic direct, elliptic retrograde, hyperbolic direct and hyperbolic retrograde. Then, the modification in the orbit of the comet due to the close approach is shown in plots that specify from which group the comet's orbit is coming and to which group it is going. Several families of orbits are found and shown in detail. An analysis about the trends as parameters (position and velocity at the periapse) vary is performed and the influence of each of them is shown and explained. The result is a collection of maps that describe the evolution of the trajectory of the comet due to the close approach. Those maps can be used to estimate the probability of some events, like the capture or escape of a comet. An example of this technique is shown in the paper. (C) 2005 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
In this work we consider a one-dimensional quasilinear parabolic equation and we prove that the lap number of any solution cannot increase through orbits as the time passes if the initial data is a continuous function. We deal with the lap number functional as a Lyapunov function, and apply lap number properties to reach an understanding on the asymptotic behavior of a particular problem. (c) 2006 Published by Elsevier Ltd.
Resumo:
Artificial satellites around the Earth can be temporarily captured by the Moon via gravitational mechanisms., How long the capture remains depends on the phase space region where the trajectory is located. This interval of time (capture time) ranges from less than one day (a single passage), up to 500 days, or even more. Orbits of longer times might be very useful for certain types of missions. The advantage of the ballistic capture is to save fuel consumption in an orbit transference from around the Earth to around the Moon. Some of the impulse needed in the transference is saved by the use of the gravitational forces involved. However, the time needed for the transference is elongated from days to months. In the present work we have mapped a significant part of the phase space of the Earth-Moon system, determining the length of the capture times and the origin of the trajectory, if it comes from the Earth direction, or from the opposite direction. Using such map we present a set of missions considering the utilization of the long capture times. (C) 2003 COSPAR. Published by Elsevier B.V. Ltd. All rights reserved.
Resumo:
This paper deals with a class of singularly perturbed reversible planar vector fields around the origin where the normal hyperbolicity assumption is not assumed. We exhibit conditions for the existence of infinitely many periodic orbits and hetero-clinic cycles converging to singular orbits with respect to the Hausdorf distance. In addition, generic normal forms of such singularities are presented.
Resumo:
A q-deformed analogue of zero-coupled nucleon pair states is constructed and the possibility of accounting for pairing correlations examined. For the single orbit case, the deformed pairs are found to be more strongly bound than the pairs with zero deformation, when a real-valued q parameter is used. It is found that an appropriately scaled deformation parameter reproduces the empirical few nucleon binding energies for nucleons in the 1f7/2 orbit and 1g9/2 orbit. The deformed pair Hamiltonian apparently accounts for many-body correlations, the strength of higher-order force terms being determined by the deformation parameter q. An extension to the multishell case, with deformed zero-coupled pairs distributed over several single particle orbits, has been realized. An analysis of calculated and experimental ground state energies and the energy spectra of three lowermost 0+ states, for even-A Ca isotopes, reveals that the deformation simulates the effective residual interaction to a large extent.
Resumo:
Trajectories of the planar, circular, restricted three-body problem are given in the configuration space through the caustics associated to the invariant tori of quasi-periodic orbits. It is shown that the caustics of trajectories librating in any particular resonance display some features associated to that resonance. This method can be considered complementary to the Poincare surface of section method, because it provides information not accessible by the other method.
Resumo:
We compute the semiclassical magnetization and susceptibility of non-interacting electrons, confined by a smooth two-dimensional potential and subjected to a uniform perpendicular magnetic field, in the general case when their classical motion is chaotic. It is demonstrated that the magnetization per particle m(B) is directly related to the staircase function N(E), which counts the single-particle levels up to energy E. Using Gutzwiller's trace formula for N, we derive a semiclassical expression for m. Our results show that the magnetization has a non-zero average, which arises from quantum corrections to the leading-order Weyl approximation to the mean staircase and which is independent of whether the classical motion is chaotic or not. Fluctuations about the average are due to classical periodic orbits and do represent a signature of chaos. This behaviour is confirmed by numerical computations for a specific system.
Resumo:
We study the dynamics of a class of reversible vector fields having eigenvalues (0, alphai, -alphai) around their symmetric equilibria. We give a complete list of all normal forms for such vector fields, their versal unfoldings, and the corresponding bifurcation diagrams of the codimensional-one case. We also obtain some important conclusions on the existence of homoclinic and heteroclinic orbits, invariant tori and symmetric periodic orbits.
Resumo:
In this paper singularly perturbed reversible vector fields defined in R-n without normal hyperbolicity conditions are discussed. The main results give conditions for the existence of infinitely many periodic orbits and heteroclinic cycles converging to singular orbits with respect to the Hausdorff distance.
Resumo:
In the present work we analyse the behaviour of a particle under the gravitational influence of two massive bodies and a particular dissipative force. The circular restricted three body problem, which describes the motion of this particle, has five equilibrium points in the frame which rotates with the same angular velocity as the massive bodies: two equilateral stable points (L-4, L-5) and three colinear unstable points (L-1, L-2, L-3). A particular solution for this problem is a stable orbital libration, called a tadpole orbit, around the equilateral points. The inclusion of a particular dissipative force can alter this configuration. We investigated the orbital behaviour of a particle initially located near L4 or L5 under the perturbation of a satellite and the Poynting-Robertson drag. This is an example of breakdown of quasi-periodic motion about an elliptic point of an area-preserving map under the action of dissipation. Our results show that the effect of this dissipative force is more pronounced when the mass of the satellite and/or the size of the particle decrease, leading to chaotic, although confined, orbits. From the maximum Lyapunov Characteristic Exponent a final value of gamma was computed after a time span of 10(6) orbital periods of the satellite. This result enables us to obtain a critical value of log y beyond which the orbit of the particle will be unstable, leaving the tadpole behaviour. For particles initially located near L4, the critical value of log gamma is -4.07 and for those particles located near L-5 the critical value of log gamma is -3.96. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The planar, circular, restricted three-body problem predicts the existence of periodic orbits around the Lagrangian equilibrium point L1. Considering the Earth-lunar-probe system, some of these orbits pass very close to the surfaces of the Earth and the Moon. These characteristics make it possible for these orbits, in spite of their instability, to be used in transfer maneuvers between Earth and lunar parking orbits. The main goal of this paper is to explore this scenario, adopting a more complex and realistic dynamical system, the four-body problem Sun-Earth-Moon-probe. We defined and investigated a set of paths, derived from the orbits around L1, which are capable of achieving transfer between low-altitude Earth (LEO) and lunar orbits, including high-inclination lunar orbits, at a low cost and with flight time between 13 and 15 days.
Resumo:
The irregular satellites of Jupiter are believed to be captured asteroids or planetesimals. In the present work is studied the direction of capture of these objects as a function of their orbital inclination. We performed numerical simulations of the restricted three-body problem, Sun-Jupiter-particle, taking into account the growth of Jupiter. The integration was made backward in time. Initially, the particles have orbits as satellites of Jupiter, which has its present mass. Then, the system evolved with Jupiter losing mass and the satellites escaping from the planet. The reverse of the escape direction corresponds to the capture direction. The results show that the Lagrangian points L1 and L2 mainly guide the direction of capture. Prograde satellites are captured through these two gates with very narrow amplitude angles. In the case of retrograde satellites, these two gates are wider. The capture region increases as the orbital inclination increases. In the case of planar retrograde satellites the directions of capture cover the whole 360 degrees around Jupiter. We also verified that prograde satellites are captured earlier in actual time than retrograde ones.
Resumo:
The motion of a test particle in the vicinity of exterior resonances is examined in the context of the planar, circular, restricted three-body problem. The existence of asymmetric periodic orbits associated with the 1 : n resonances (where n = 2, 3, 4, 5) is confirmed; there is also evidence of asymmetric resonances associated with larger values of n. A detailed examination of the evolution of the family of orbits associated with the 1:2 resonance shows the sequence that leads to asymmetric libration. on the basis of numerical studies of the phase space it is concluded that the existence of asymmetric libration means that the region exterior to the perturbing mass is more chaotic than the interior region. The apparent absence of 'particles' in 1 : n resonances in the solar system may reflect this inherent bias.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)