913 resultados para Model predictive control
Resumo:
In the continuing debate over the impact of genetically modified (GM) crops on farmers of developing countries, it is important to accurately measure magnitudes such as farm-level yield gains from GM crop adoption. Yet most farm-level studies in the literature do not control for farmer self-selection, a potentially important source of bias in such estimates. We use farm-level panel data from Indian cotton farmers to investigate the yield effect of GM insect-resistant cotton. We explicitly take into account the fact that the choice of crop variety is an endogenous variable which might lead to bias from self-selection. A production function is estimated using a fixed-effects model to control for selection bias. Our results show that efficient farmers adopt Bacillus thuringiensis (Bt) cotton at a higher rate than their less efficient peers. This suggests that cross-sectional estimates of the yield effect of Bt cotton, which do not control for self-selection effects, are likely to be biased upwards. However, after controlling for selection bias, we still find that there is a significant positive yield effect from adoption of Bt cotton that more than offsets the additional cost of Bt seed.
Resumo:
In the continuing debate over the impact of genetically modified (GM) crops on farmers of developing countries, it is important to accurately measure magnitudes such as farm-level yield gains from GM crop adoption. Yet most farm-level studies in the literature do not control for farmer self-selection, a potentially important source of bias in such estimates. We use farm-level panel data from Indian cotton farmers to investigate the yield effect of GM insect-resistant cotton. We explicitly take into account the fact that the choice of crop variety is an endogenous variable which might lead to bias from self-selection. A production function is estimated using a fixed-effects model to control for selection bias. Our results show that efficient farmers adopt Bacillus thuringiensis (Bt) cotton at a higher rate than their less efficient peers. This suggests that cross-sectional estimates of the yield effect of Bt cotton, which do not control for self-selection effects, are likely to be biased upwards. However, after controlling for selection bias, we still find that there is a significant positive yield effect from adoption of Bt cotton that more than offsets the additional cost of Bt seed.
Resumo:
A new self-tuning implicit pole-assignment algorithm is presented which, through the use of a pole compression factor and different RLS model and control structures, overcomes stability and convergence problems encountered in previously available algorithms. Computational requirements of the technique are much reduced when compared to explicit pole-assignment schemes, whereas the inherent robustness of the strategy is retained.
Resumo:
Differential geometry is used to investigate the structure of neural-network-based control systems. The key aspect is relative order—an invariant property of dynamic systems. Finite relative order allows the specification of a minimal architecture for a recurrent network. Any system with finite relative order has a left inverse. It is shown that a recurrent network with finite relative order has a local inverse that is also a recurrent network with the same weights. The results have implications for the use of recurrent networks in the inverse-model-based control of nonlinear systems.
Resumo:
O objetivo desta pesquisa foi analisar o desenho institucional do controle externo sobre os contratos de gestão no âmbito do Tribunal de Contas do estado de Pernambuco quanto a sua aderência aos conteúdos da lei estadual que disciplina as Organizações Sociais e quanto a sua observância por parte dos atores envolvidos: Administração Pública, técnicos do tribunal de contas e membros do seu corpo julgador. Foram assumidas as seguintes premissas: que os novos arranjos de prestação de serviços públicos, por meio de parcerias com as Organizações Sociais, demandam por parte dos Tribunais de Contas desenhos institucionais de fiscalização específicos, que a pesar de variáveis devem primar por sua capacidade de revelar informações; que o processo de formatação destes desenhos institucionais deve ser dinâmico, permitindo-se que as contigências experimentadas na sua implementação possam contribuir no seu aperfeiçoamento; e que esses desenhos institucionais geram impacto no comportamento dos atores envolvidos. O estudo foi realizado por meio de pesquisa documental. A metodologia qualitativa de análise de conteúdo foi escolhida para análise dos dados. Os resultados da pesquisa permitiram concluir que o desenho institucional de controle dos contratos de gestão no âmbito do TCE-PE caracteriza-se por sua fragilidade como mecanismo de revelação de informação e, consequentemente, não contribui para a redução da assimetria de informação que se estabelece com a implementação dos contratos de gestão. Adicionalmente, compromete e limita o desempenho do Tribunal de Contas no controle destes ajustes. Verificou-se, também, uma a baixa observância do desenho institucional identificado, em que pese sua fragilidade, por parte dos atores envolvidos no controle dos contratos de gestão, implicando em uma baixa institucionalização deste desenho. Os resultados devem proporcionar uma rediscussão acerca dos mecanismos de controle dos contratos de gestão por parte do TCE-PE, que poderá resultar em um novo desenho institucional com vistas a conferir maior transparência às parcerias com as Organizações Sociais.
Resumo:
A pesquisa tem como objetivo desenvolver uma estrutura de controle preditivo neural, com o intuito de controlar um processo de pH, caracterizado por ser um sistema SISO (Single Input - Single Output). O controle de pH é um processo de grande importância na indústria petroquímica, onde se deseja manter constante o nível de acidez de um produto ou neutralizar o afluente de uma planta de tratamento de fluidos. O processo de controle de pH exige robustez do sistema de controle, pois este processo pode ter ganho estático e dinâmica nãolineares. O controlador preditivo neural envolve duas outras teorias para o seu desenvolvimento, a primeira referente ao controle preditivo e a outra a redes neurais artificiais (RNA s). Este controlador pode ser dividido em dois blocos, um responsável pela identificação e outro pelo o cálculo do sinal de controle. Para realizar a identificação neural é utilizada uma RNA com arquitetura feedforward multicamadas com aprendizagem baseada na metodologia da Propagação Retroativa do Erro (Error Back Propagation). A partir de dados de entrada e saída da planta é iniciado o treinamento offline da rede. Dessa forma, os pesos sinápticos são ajustados e a rede está apta para representar o sistema com a máxima precisão possível. O modelo neural gerado é usado para predizer as saídas futuras do sistema, com isso o otimizador calcula uma série de ações de controle, através da minimização de uma função objetivo quadrática, fazendo com que a saída do processo siga um sinal de referência desejado. Foram desenvolvidos dois aplicativos, ambos na plataforma Builder C++, o primeiro realiza a identificação, via redes neurais e o segundo é responsável pelo controle do processo. As ferramentas aqui implementadas e aplicadas são genéricas, ambas permitem a aplicação da estrutura de controle a qualquer novo processo
Resumo:
This work shows a study about the Generalized Predictive Controllers with Restrictions and their implementation in physical plants. Three types of restrictions will be discussed: restrictions in the variation rate of the signal control, restrictions in the amplitude of the signal control and restrictions in the amplitude of the Out signal (plant response). At the predictive control, the control law is obtained by the minimization of an objective function. To consider the restrictions, this minimization of the objective function is done by the use of a method to solve optimizing problems with restrictions. The chosen method was the Rosen Algorithm (based on the Gradient-projection). The physical plants in this study are two didactical systems of water level control. The first order one (a simple tank) and another of second order, which is formed by two tanks connected in cascade. The codes are implemented in C++ language and the communication with the system to be done through using a data acquisition panel offered by the system producer
Resumo:
The control, automation and optimization areas help to improve the processes used by industry. They contribute to a fast production line, improving the products quality and reducing the manufacturing costs. Didatic plants are good tools for research in these areas, providing a direct contact with some industrial equipaments. Given these capabilities, the main goal of this work is to model and control a didactic plant, which is a level and flow process control system with an industrial instrumentation. With a model it is possible to build a simulator for the plant that allows studies about its behaviour, without any of the real processes operational costs, like experiments with controllers. They can be tested several times before its application in a real process. Among the several types of controllers, it was used adaptive controllers, mainly the Direct Self-Tuning Regulators (DSTR) with Integral Action and the Gain Scheduling (GS). The DSTR was based on Pole-Placement design and use the Recursive Least Square to calculate the controller parameters. The characteristics of an adaptive system was very worth to guarantee a good performance when the controller was applied to the plant
Resumo:
Includes bibliography
Resumo:
The good efficiency in a sewage treatment plant (WWTP) is a great importance to the environment. The management of electromechanical equipment installed in these stations is a major challenge due to the fact that they are installed on areas of difficult access and maintenance unhealthy and making the time for the correction of any faults is extended. This paper proposes the development of a Wireless Sensor Network (WSN), in order to monitor electromechanical equipment, allowing the Concessionaire a predictive control in real time. The design of a wireless sensors network for monitoring equipment requires not only the development and assembly of the sensor modules, but must also include the development of software for managing the data collected. Thus, this work includes a Zigbee WSN, small, adapted for monitoring of electromechanical equipment and environmental conditions of a WWTP, type stabilization pond, installed in an area of approximately 0.15 km 2 and the average flow of 320 liters of treatment per second. The experimental results show that this monitoring system can perform with the collection of parameters of performance and quality assessment at the station.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Este artigo discute conceitos relevantes à perspectiva do curso de vida, porém pouco difundidos no Brasil: controle primário e controle secundário. O primeiro se refere aos esforços que o indivíduo empreende para adaptar o ambiente às suas necessidades; o segundo, para se adaptar ao ambiente. Apresenta-se a formulação original dos conceitos como modelo de dois processos de controle, em oposição a modelos de processo único, como o do desamparo aprendido. Em seguida, discute-se revisão conceitual que trouxe modificação e ampliação para estes construtos, concebendo-os em um modelo bidimensional que articula controle primário e secundário com os conceitos de seleção e compensação. Nesse processo, apresentam-se contribuições no intuito de estimular a reflexão e expandir a discussão teórico-conceitual que envolve estes construtos.
Resumo:
Purpose of review: Overview on integrated care trials focusing on effectiveness and efficiency published from 2011 to 2013. Recent findings: Eight randomized controlled trials (RCTs) and 21 non-RCT studies were published from 2011 to 2013. Studies differed in several methodological aspects such as study population, psychotherapeutic approaches used, outcome parameters, follow-up times, fidelities, and implementation of the integrated care model and the nation-specific healthcare context with different control conditions. This makes it difficult to draw firm conclusions. Most studies demonstrated relevant improvements regarding symptoms (P = 0.001) and functioning (P = 0.01), quality of life (P = 0.01), adherence (P <0.05) and patient's satisfaction (P = 0.01), and reduction of caregiver's stress (P < 0.05). Mean total costs were favoring or at least equalizing costs but with positive effects found on subjective health favoring integrated care models. Summary: There is an increasing interest in the effectiveness and efficiency of integrated care models in patients with mental disorders, specifically in those with severe and persistent mental illness. To increase generalizability, future trials should exactly describe rationales and content of integrated care model and control conditions.