488 resultados para MIDLINE THALAMUS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this review, the neural underpinnings of the experience of presence are outlined. Firstly, it is shown that presence is associated with activation of a distributed network, which includes the dorsal and ventral visual stream, the parietal cortex, the premotor cortex, mesial temporal areas, the brainstem and the thalamus. Secondly, the dorsolateral prefrontal cortex (DLPFC) is identified as a key node of the network as it modulates the activity of the network and the associated experience of presence. Thirdly, children lack the strong modulatory influence of the DLPFC on the network due to their unmatured frontal cortex. Fourthly, it is shown that presence-related measures are influenced by manipulating the activation in the DLPFC using transcranial direct current stimulation (tDCS) while participants are exposed to the virtual roller coaster ride. Finally, the findings are discussed in the context of current models explaining the experience of presence, the rubber hand illusion, and out-of-body experiences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Preparing for potentially threatening events in the future is essential for survival. Anticipating the future to be unpleasant is also a cognitive key feature of depression. We hypothesized that 'pessimism'-related emotion processing would characterize brain activity in major depression.MethodDuring functional magnetic resonance imaging, depressed patients and a healthy control group were cued to expect and then perceive pictures of known emotional valences--pleasant, unpleasant and neutral--and stimuli of unknown valence that could have been either pleasant or unpleasant. Brain activation associated with the 'unknown' expectation was compared with the 'known' expectation conditions. RESULTS While anticipating pictures of unknown valence, activation patterns in depressed patients within the medial and dorsolateral prefrontal areas, inferior frontal gyrus, insula and medial thalamus were similar to activations associated with expecting unpleasant pictures, but not with expecting positive pictures. The activity within a majority of these areas correlated with the depression scores. Differences between healthy and depressed persons were found particularly for medial and dorsolateral prefrontal and insular activations. CONCLUSIONS Brain activation in depression during expecting events of unknown emotional valence was comparable with activation while expecting certainly negative, but not positive events. This neurobiological finding is consistent with cognitive models supposing that depressed patients develop a 'pessimistic' attitude towards events with an unknown emotional meaning. Thereby, particularly the role of brain areas associated with the processing of cognitive and executive control and of the internal state is emphasized in contributing to major depression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since we do not know what future holds for us, we prepare for expected emotional events in order to deal with a pleasant or threatening environment. From an evolutionary perspective, it makes sense to be particularly prepared for the worst-case scenario. We were interested to evaluate whether this assumption is reflected in the central nervous information processing associated with expecting visual stimuli of unknown emotional valence. While being scanned with functional magnetic resonance imaging, healthy subjects were cued to expect and then perceive visual stimuli with a known emotional valence as pleasant, unpleasant, and neutral, as well as stimuli of unknown valence that could have been either pleasant or unpleasant. While anticipating pictures of unknown valence, the activity of emotion processing brain areas was similar to activity associated with expecting unpleasant pictures, but there were no areas in which the activity was similar to the activity when expecting pleasant pictures. The activity of the revealed regions, including bilateral insula, right inferior frontal gyrus, medial thalamus, and red nucleus, further correlated with the individual ratings of mood: the worse the mood, the higher the activity. These areas are supposedly involved in a network for internal adaptation and preparation processes in order to act according to potential or certain unpleasant events. Their activity appears to reflect a 'pessimistic' bias by anticipating the events of unknown valence to be unpleasant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: HIV-1 viral escape in the cerebrospinal fluid (CSF) despite viral suppression in plasma is rare [1,2]. We describe the case of a 50-year-old HIV-1 infected patient who was diagnosed with HIV-1 in 1995. Antiretroviral therapy (ART) was started in 1998 with a CD4 T cell count of 71 cells/ìL and HIV-viremia of 46,000 copies/mL. ART with zidovudine (AZT), lamivudine (3TC) and efavirenz achieved full viral suppression. After the patient had interrupted ART for two years, treatment was re-introduced with tenofovir (TDF), emtricitabin (FTC) and ritonavir boosted atazanavir (ATVr). This regimen suppressed HIV-1 in plasma for nine years and CD4 cells stabilized around 600 cells/ìL. Since July 2013, the patient complained about severe gait ataxia and decreased concentration. Materials and Methods: Additionally to a neurological examination, two lumbar punctures, a cerebral MRI and a neuropsycological test were performed. HIV-1 viral load in plasma and in CSF was quantified using Cobas TaqMan HIV-1 version 2.0 (Cobas Ampliprep, Roche diagnostic, Basel, Switzerland) with a detection limit of 20 copies/mL. Drug resistance mutations in HIV-1 reverse transcriptase and protease were evaluated using bulk sequencing. Results: The CSF in January 2014 showed a pleocytosis with 75 cells/ìL (100% mononuclear) and 1,184 HIV-1 RNA copies/mL, while HIV-1 in plasma was below 20 copies/mL. The resistance testing of the CSF-HIV-1 RNA showed two NRTI resistance-associated mutations (M184V and K65R) and one NNRTI resistance-associated mutation (K103N). The cerebral MRI showed increased signal on T2-weighted images in the subcortical and periventricular white matter, in the basal ganglia and thalamus. Four months after ART intensification with AZT, 3TC, boosted darunavir and raltegravir, the pleocytosis in CSF cell count normalized to 1 cell/ìL and HIV viral load was suppressed. The neurological symptoms improved; however, equilibrium disturbances and impaired memory persisted. The neuro-psychological evaluation confirmed neurocognitive impairments in executive functions, attention, working and nonverbal memory, speed of information processing, visuospatial abilities and motor skills. Conclusions: HIV-1 infected patients with neurological complaints prompt further investigations of the CSF including measurement of HIV viral load and genotypic resistance testing since isolated replication of HIV with drug resistant variants can rarely occur despite viral suppression in plasma. Optimizing ART by using drugs with improved CNS penetration may achieve viral suppression in CSF with improvement of neurological symptoms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION The clinical tests currently used to assess spinal biomechanics preoperatively are unable to assess true mechanical spinal stiffness. They rely on spinal displacement without considering the force required to deform a patient's spine. We propose a preoperative method for noninvasively quantifying the three-dimensional patient-specific stiffness of the spines of adolescent idiopathic scoliosis patients. METHODS The technique combines a novel clinical test with numerical optimization of a finite element model of the patient's spine. RESULTS A pilot study conducted on five patients showed that the model was able to provide accurate 3D reconstruction of the spine's midline and predict the spine's stiffness for each patient in flexion, bending, and rotation. Statistically significant variation of spinal stiffness was observed between the patients. CONCLUSION This result confirms that spinal biomechanics is patient-specific, which should be taken into consideration to individualize surgical treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In personal and in society related context, people often evaluate the risk of environmental and technological hazards. Previous research addressing neuroscience of risk evaluation assessed particularly the direct personal risk of presented stimuli, which may have comprised for instance aspects of fear. Further, risk evaluation primarily was compared to tasks of other cognitive domains serving as control conditions, thus revealing general risk related brain activity, but not such specifically associated with estimating a higher level of risk. We here investigated the neural basis on which lay-persons individually evaluated the risk of different potential hazards for the society. Twenty healthy subjects underwent functional magnetic resonance imaging while evaluating the risk of fifty more or less risky conditions presented as written terms. Brain activations during the individual estimations of 'high' against 'low' risk, and of negative versus neutral and positive emotional valences were analyzed. Estimating hazards to be of high risk was associated with activation in medial thalamus, anterior insula, caudate nucleus, cingulate cortex and further prefrontal and temporo-occipital areas. These areas were not involved according to an analysis of the emotion ratings. In conclusion, we emphasize a contribution of the mentioned brain areas involved to signal high risk, here not primarily associated with the emotional valence of the risk items. These areas have earlier been reported to be associated with, beside emotional, viscerosensitive and implicit processing. This leads to assumptions of an intuitive contribution, or a "gut-feeling", not necessarily dependent of the subjective emotional valence, when estimating a high risk of environmental hazards.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tick-borne encephalitis virus (TBEV) is the causative agent of human TBE, a severe infection that can cause long-lasting neurologic sequelae. Langat virus (LGTV), which is closely related to TBEV, has a low virulence for human hosts and has been used as a live vaccine against TBEV. Tick-borne encephalitis by natural infection of LGTV in humans has not been described, but one of 18,500 LGTV vaccinees developed encephalitis. The pathogenetic mechanisms of TBEV are poorly understood and, currently, no effective therapy is available. We developed an infant rat model of TBE using LGTV as infective agent. Infant Wistar rats were inoculated intracisternally with 10 focus-forming units of LGTV and assessed for clinical disease and neuropathologic findings at Days 2, 4, 7, and 9 after infection. Infection with LGTV led to gait disturbance, hypokinesia, and reduced weight gain or weight loss. Cerebrospinal fluid concentrations of RANTES, interferon-γ, interferon-β, interleukin-6, and monocyte chemotactic protein-1 were increased in infected animals. The brains of animals with LGTV encephalitis exhibited characteristic perivascular inflammatory cuffs and glial nodules; immunohistochemistry documented the presence of LGTV in the thalamus, hippocampus, midbrain, frontal pole, and cerebellum. Thus, LGTV meningoencephalitis in infant rats mimics important clinical and histopathologic features of human TBE. This new model provides a tool to investigate disease mechanisms and to evaluate new therapeutic strategies against encephalitogenic flaviviruses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, many studies about a network active during rest and deactivated during tasks emerged in the literature: the default mode network (DMN). Spatial and temporal DMN features are important markers for psychiatric diseases. Another prominent indicator of cognitive functioning, yielding information about the mental condition in health and disease, is working memory (WM) processing. In EEG studies, frontal-midline theta power has been shown to increase with load during WM retention in healthy subjects. From these findings, the conclusion can be drawn that an increase in resting state DMN activity may go along with an increase in theta power in high-load WM conditions. We followed this hypothesis in a study on 17 healthy subjects performing a visual Sternberg WM task. The DMN was obtained by a BOLD-ICA approach and its dynamics represented by the percent-strength during pre-stimulus periods. DMN dynamics were temporally correlated with EEG theta spectral power from retention intervals. This so-called covariance mapping yielded the spatial distribution of the theta EEG fluctuations associated with the dynamics of the DMN. In line with previous findings, theta power was increased at frontal-midline electrodes in high- versus low-load conditions during early WM retention. However, load-dependent correlations of DMN with theta power resulted in primarily positive correlations in low-load conditions, while during high-load conditions negative correlations of DMN activity and theta power were observed at frontal-midline electrodes. This DMN-dependent load effect reached significance during later retention. Our results show a complex and load-dependent interaction of pre-stimulus DMN activity and theta power during retention, varying over the course of the retention period. Since both, WM performance and DMN activity, are markers of mental health, our results could be important for further investigations of psychiatric populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, multiple studies showed that spatial and temporal features of a task-negative default mode network (DMN) (Greicius et al., 2003) are important markers for psychiatric diseases (Balsters et al., 2013). Another prominent indicator of cognitive functioning, yielding information about the mental condition in health and disease, is working memory (WM) processing. In EEG and MEG studies, frontal-midline theta power has been shown to increase with load during WM retention in healthy subjects (Brookes et al., 2011). Negative correlations between DMN activity and theta amplitude have been found during resting state (Jann et al., 2010) as well as during WM (Michels et al., 2010). Likewise, WM training resulted in higher resting state theta power as well as increased small-worldness of the resting brain (Langer et al., 2013). Further, increased fMRI connectivity between nodes of the DMN correlated with better WM performance (Hampson et al., 2006). Hence, the brain’s default state might influence it’s functioning during task. We therefore hypothesized correlations between pre-stimulus DMN activity and EEG-theta power during WM maintenance, depending on the WM load. 17 healthy subjects performed a Sternberg WM task while being measured simultaneously with EEG and fMRI. Data was recorded within a multicenter-study: 12 subjects were measured in Zurich with a 64-channels MR-compatible system (Brain Products) in a 3T Philips scanner, 5 subjects with a 96-channel MR-compatible system (Brain Products) in a 3T Siemens Scanner in Bern. The DMN components was obtained by a group BOLD-ICA approach over the full task duration (figure 1). The subject-wise dynamics were obtained by back-reconstructed onto each subject’s fMRI data and normalized to percent signal change values. The single trial pre-stimulus-DMN activation was then temporally correlated with the single trial EEG-theta (3-8 Hz) spectral power during retention intervals. This so-called covariance mapping (Jann et al., 2010) yielded the spatial distribution of the theta EEG fluctuations during retention associated with the dynamics of the pre-stimulus DMN. In line with previous findings, theta power was increased at frontal-midline electrodes in high- versus low-load conditions during early WM retention (figure 2). However, correlations of DMN with theta power resulted in primarily positive correlations in low-load conditions, while during high-load conditions negative correlations of DMN activity and theta power were observed at frontal-midline electrodes. This DMN-dependent load effect reached significance in the middle of the retention period (TANOVA, p<0.05) (figure 3). Our results show a complex and load-dependent interaction of pre-stimulus DMN activity and theta power during retention, varying over time. While at a more global, load-independent view pre-stimulus DMN activity correlated positively with theta power during retention, the correlation was inversed during certain time windows in high-load trials, meaning that in trials with enhanced pre-stimulus DMN activity theta power decreases during retention. Since both WM performance and DMN activity are markers of mental health our results could be important for further investigations of psychiatric populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tick borne encephalitis virus (TBE) is an endemic infectious agent in northeastern Switzerland causing mainly meningoencephalomyelitis in dogs. We report a canine case of tick born meningoencephalomyelitis resulting in flaccid tetraplegia and, subsequently, fatal respiratory failure. Magnetic resonance imaging (MRI) demonstrated intra-axial bilateral, symmetric, and hyperintense lesions in T2-weighted and Fluid Attenuated Inversion Recovery (FLAIR) sequences affecting thalamus, basal nuclei, cerebral white matter and ventral horns of the caudal cervical spine. These radiological findings overlap those described during flavivirus encephalitis affecting human beings. These lesions in MRI and diffusion weighted images correlated with areas of vasogenic edema detected histopathologically. In endemic regions, clinicians should be aware that bilateral, symmetrical hyperintense thalamic lesions in T2WI can be suggestive of flavivirus infection in dogs with encephalitis

Relevância:

10.00% 10.00%

Publicador:

Resumo:

3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors are widely used for secondary stroke prevention. Besides their lipid-lowering activity, pleiotropic effects on neuronal survival, angiogenesis, and neurogenesis have been described. In view of these observations, we were interested whether HMG-CoA reductase inhibition in the post-acute stroke phase promotes neurological recovery, peri-lesional, and contralesional neuronal plasticity. We examined effects of the HMG-CoA reductase inhibitor rosuvastatin (0.2 or 2.0 mg/kg/day i.c.v.), administered starting 3 days after 30 min of middle cerebral artery occlusion for 30 days. Here, we show that rosuvastatin treatment significantly increased the grip strength and motor coordination of animals, promoted exploration behavior, and reduced anxiety. It was associated with structural remodeling of peri-lesional brain tissue, reflected by increased neuronal survival, enhanced capillary density, and reduced striatal and corpus callosum atrophy. Increased sprouting of contralesional pyramidal tract fibers crossing the midline in order to innervate the ipsilesional red nucleus was noticed in rosuvastatin compared with vehicle-treated mice, as shown by anterograde tract tracing experiments. Western blot analysis revealed that the abundance of HMG-CoA reductase was increased in the contralesional hemisphere at 14 and 28 days post-ischemia. Our data support the idea that HMG-CoA reductase inhibition promotes brain remodeling and plasticity far beyond the acute stroke phase, resulting in neurological recovery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effective adaptive behavior rests on an appropriate understanding of how much responsibility we have over outcomes in the environment. This attribution of agency to ourselves or to an external event influences our behavioral and affective response to the outcomes. Despite its special importance to understanding human motivation and affect, the neural mechanisms involved in self-attributed rewards and punishments remain unclear. Previous evidence implicates the anterior insula (AI) in evaluating the consequences of our own actions. However, it is unclear if the AI has a general role in feedback evaluation (positive and negative) or plays a specific role during error processing. Using functional magnetic resonance imaging and a motion prediction task, we investigate neural responses to self- and externally attributed monetary gains and losses. We found that attribution effects vary according to the valence of feedback: significant valence × attribution interactions in the right AI, the anterior cingulate cortex (ACC), the midbrain, and the right ventral putamen. Self-attributed losses were associated with increased activity in the midbrain, the ACC and the right AI, and negative BOLD response in the ventral putamen. However, higher BOLD activity to self-attributed feedback (losses and gains) was observed in the left AI, the thalamus, and the cerebellar vermis. These results suggest a functional lateralization of the AI. The right AI, together with the midbrain and the ACC, is mainly involved in processing the salience of the outcome, whereas the left is part of a cerebello-thalamic-cortical pathway involved in cognitive control processes important for subsequent behavioral adaptations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many people routinely criticise themselves. While self-criticism is largely unproblematic for most individuals, depressed patients exhibit excessive self-critical thinking, which leads to strong negative affects. We used functional magnetic resonance imaging in healthy subjects (N = 20) to investigate neural correlates and possible psychological moderators of self-critical processing. Stimuli consisted of individually selected adjectives of personally negative content and were contrasted with neutral and negative non-self-referential adjectives. We found that confrontation with self-critical material yielded neural activity in regions involved in emotions (anterior insula/hippocampus-amygdala formation) and in anterior and posterior cortical midline structures, which are associated with self-referential and autobiographical memory processing. Furthermore, contrasts revealed an extended network of bilateral frontal brain areas. We suggest that the co-activation of superior and inferior lateral frontal brain regions reflects the recruitment of a frontal top-down pathway, representing cognitive reappraisal strategies for dealing with evoked negative affects. In addition, activation of right superior frontal areas was positively associated with neuroticism and negatively associated with cognitive reappraisal. Although these findings may not be specific to negative stimuli, they support a role for clinically relevant personality traits in successful regulation of emotion during confrontation with self-critical material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schizophrenia is a devastating disorder thought to result mainly from cerebral pathology. Neuroimaging studies have provided a wealth of findings of brain dysfunction in schizophrenia. However, we are still far from understanding how particular symptoms can result from aberrant brain function. In this context, the high prevalence of motor symptoms in schizophrenia such as catatonia, neurological soft signs, parkinsonism, and abnormal involuntary movements is of particular interest. Here, the neuroimaging correlates of these motor symptoms are reviewed. For all investigated motor symptoms, neural correlates were found within the cerebral motor system. However, only a limited set of results exists for hypokinesia and neurological soft signs, while catatonia, abnormal involuntary movements and parkinsonian signs still remain understudied with neuroimaging methods. Soft signs have been associated with altered brain structure and function in cortical premotor and motor areas as well as cerebellum and thalamus. Hypokinesia is suggested to result from insufficient interaction of thalamocortical loops within the motor system. Future studies are needed to address the neural correlates of motor abnormalities in prodromal states, changes during the course of the illness, and the specific pathophysiology of catatonia, dyskinesia and parkinsonism in schizophrenia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipid resonances from mobile lipids can be observed by (1)H NMR spectroscopy in multiple tissues and have also been associated with malignancy. In order to use lipid resonances as a marker for disease, a reference standard from a healthy tissue has to be established taking the influence of variable factors like the spinning rate into account. The purpose of our study was to investigate the effect of spinning rate variation on the HR-MAS pattern of lipid resonances in non-neoplastic brain biopsies from different regions and visualize polar and non-polar lipids by fluorescence microscopy using Nile Red staining. (1)H HR-MAS NMR spectroscopy demonstrated higher lipid peak intensities in normal sheep brain pure white matter biopsies compared to mixed white and gray matter biopsies and pure gray matter biopsies. High spinning rates increased the visibility particularly of the methyl resonances at 1.3 and the methylene resonance at 0.89ppm in white matter biopsies stronger compared to thalamus and brainstem biopsies, and gray matter biopsies. The absence of lipid droplets and presence of a large number of myelin sheaths observed in white matter by Nile Red fluorescence microscopy suggest that the observed lipid resonances originate from the macromolecular pool of lipid protons of the myelin sheath's plasma membranes. When using lipid contents as a marker for disease, the variable behavior of lipid resonances in different neuroanatomical regions of the brain and at variable spinning rates should be considered. The findings may open up interesting possibilities for investigating lipids in myelin sheaths.