934 resultados para Low resolution brain tomography (LORETA)
Resumo:
Current Ambient Intelligence and Intelligent Environment research focuses on the interpretation of a subject’s behaviour at the activity level by logging the Activity of Daily Living (ADL) such as eating, cooking, etc. In general, the sensors employed (e.g. PIR sensors, contact sensors) provide low resolution information. Meanwhile, the expansion of ubiquitous computing allows researchers to gather additional information from different types of sensor which is possible to improve activity analysis. Based on the previous research about sitting posture detection, this research attempts to further analyses human sitting activity. The aim of this research is to use non-intrusive low cost pressure sensor embedded chair system to recognize a subject’s activity by using their detected postures. There are three steps for this research, the first step is to find a hardware solution for low cost sitting posture detection, second step is to find a suitable strategy of sitting posture detection and the last step is to correlate the time-ordered sitting posture sequences with sitting activity. The author initiated a prototype type of sensing system called IntelliChair for sitting posture detection. Two experiments are proceeded in order to determine the hardware architecture of IntelliChair system. The prototype looks at the sensor selection and integration of various sensor and indicates the best for a low cost, non-intrusive system. Subsequently, this research implements signal process theory to explore the frequency feature of sitting posture, for the purpose of determining a suitable sampling rate for IntelliChair system. For second and third step, ten subjects are recruited for the sitting posture data and sitting activity data collection. The former dataset is collected byasking subjects to perform certain pre-defined sitting postures on IntelliChair and it is used for posture recognition experiment. The latter dataset is collected by asking the subjects to perform their normal sitting activity routine on IntelliChair for four hours, and the dataset is used for activity modelling and recognition experiment. For the posture recognition experiment, two Support Vector Machine (SVM) based classifiers are trained (one for spine postures and the other one for leg postures), and their performance evaluated. Hidden Markov Model is utilized for sitting activity modelling and recognition in order to establish the selected sitting activities from sitting posture sequences.2. After experimenting with possible sensors, Force Sensing Resistor (FSR) is selected as the pressure sensing unit for IntelliChair. Eight FSRs are mounted on the seat and back of a chair to gather haptic (i.e., touch-based) posture information. Furthermore, the research explores the possibility of using alternative non-intrusive sensing technology (i.e. vision based Kinect Sensor from Microsoft) and find out the Kinect sensor is not reliable for sitting posture detection due to the joint drifting problem. A suitable sampling rate for IntelliChair is determined according to the experiment result which is 6 Hz. The posture classification performance shows that the SVM based classifier is robust to “familiar” subject data (accuracy is 99.8% with spine postures and 99.9% with leg postures). When dealing with “unfamiliar” subject data, the accuracy is 80.7% for spine posture classification and 42.3% for leg posture classification. The result of activity recognition achieves 41.27% accuracy among four selected activities (i.e. relax, play game, working with PC and watching video). The result of this thesis shows that different individual body characteristics and sitting habits influence both sitting posture and sitting activity recognition. In this case, it suggests that IntelliChair is suitable for individual usage but a training stage is required.
Resumo:
As collections of archived digital documents continue to grow the maintenance of an archive, and the quality of reproduction from the archived format, become important long-term considerations. In particular, Adobe s PDF is now an important final form standard for archiving and distributing electronic versions of technical documents. It is important that all embedded images in the PDF, and any fonts used for text rendering, should at the very minimum be easily readable on screen. Unfortunately, because PDF is based on PostScript technology, it allows the embedding of bitmap fonts in Adobe Type 3 format as well as higher-quality outline fonts in TrueType or Adobe Type 1 formats. Bitmap fonts do not generally perform well when they are scaled and rendered on low-resolution devices such as workstation screens. The work described here investigates how a plug-in to Adobe Acrobat enables bitmap fonts to be substituted by corresponding outline fonts using a checksum matching technique against a canonical set of bitmap fonts, as originally distributed. The target documents for our initial investigations are those PDF files produced by (La)TEXsystems when set up in a default (bitmap font) configuration. For all bitmap fonts where recognition exceeds a certain confidence threshold replacement fonts in Adobe Type 1 (outline) format can be substituted with consequent improvements in file size, screen display quality and rendering speed. The accuracy of font recognition is discussed together with the prospects of extending these methods to bitmap-font PDF files from sources other than (La)TEX.
Resumo:
Atualmente, sensores remotos e computadores de alto desempenho estão sendo utilizados como instrumentos principais na coleta e produção de dados oceanográficos. De posse destes dados, é possível realizar estudos que permitem simular e prever o comportamento do oceano por meio de modelos numéricos regionais. Dentre os fatores importantes no estudo da oceanografia, podem ser destacados àqueles referentes aos impactos ambientais, de contaminação antrópica, utilização de energias renováveis, operações portuárias e etc. Contudo, devido ao grande volume de dados gerados por instituições ambientais, na forma de resultados de modelos globais como o HYCOM (Hybrid Coordinate Ocean Model) e dos programas de Reanalysis da NOAA (National Oceanic and Atmospheric Administration), torna-se necessária a criação de rotinas computacionais para realizar o tratamento de condições iniciais e de contorno, de modo que possam ser aplicadas a modelos regionais como o TELEMAC3D (www.opentelemac.org). Problemas relacionados a baixa resolução, ausência de dados e a necessidade de interpolação para diferentes malhas ou sistemas de coordenadas verticais, tornam necessária a criação de um mecanismo computacional que realize este tratamento adequadamente. Com isto, foram desenvolvidas rotinas na linguagem de programação Python, empregando interpoladores de vizinho mais próximo, de modo que, a partir de dados brutos dos modelos HYCOM e do programa de Reanalysis da NOAA, foram preparadas condições iniciais e de contorno para a realização de uma simulação numérica teste. Estes resultados foram confrontados com outro resultado numérico onde, as condições foram construídas a partir de um método de interpolação mais sofisticado, escrita em outra linguagem, e que já vem sendo utilizada no laboratório. A análise dos resultados permitiu concluir que, a rotina desenvolvida no âmbito deste trabalho, funciona adequadamente para a geração de condições iniciais e de contorno do modelo TELEMAC3D. Entretanto, um interpolador mais sofisticado deve ser desenvolvido de forma a aumentar a qualidade nas interpolações, otimizar o custo computacional, e produzir condições que sejam mais realísticas para a utilização do modelo TELEMAC3D.
Resumo:
Lung cancer is the most frequently fatal cancer, with poor survival once the disease is advanced. Annual low-dose computed tomography has shown a survival benefit in screening individuals at high risk for lung cancer. Based on the available evidence, the European Society of Radiology and the European Respiratory Society recommend lung cancer screening in comprehensive, quality-assured, longitudinal programmes within a clinical trial or in routine clinical practice at certified multidisciplinary medical centres. Minimum requirements include: standardised operating procedures for low-dose image acquisition, computer-assisted nodule evaluation, and positive screening results and their management; inclusion/exclusion criteria; expectation management; and smoking cessation programmes. Further refinements are recommended to increase quality, outcome and cost-effectiveness of lung cancer screening: inclusion of risk models, reduction of effective radiation dose, computer-assisted volumetric measurements and assessment of comorbidities (chronic obstructive pulmonary disease and vascular calcification). All these requirements should be adjusted to the regional infrastructure and healthcare system, in order to exactly define eligibility using a risk model, nodule management and a quality assurance plan. The establishment of a central registry, including a biobank and an image bank, and preferably on a European level, is strongly encouraged. Key points: • Lung cancer screening using low dose computed tomography reduces mortality. • Leading US medical societies recommend large scale screening for high-risk individuals. • There are no lung cancer screening recommendations or reimbursed screening programmes in Europe as of yet. • The European Society of Radiology and the European Respiratory Society recommend lung cancer screening within a clinical trial or in routine clinical practice at certified multidisciplinary medical centres. • High risk, eligible individuals should be enrolled in comprehensive, quality-controlled longitudinal programmes.
Resumo:
The TOMO-ETNA experiment was devised to image of the crust underlying the volcanic edifice and, possibly, its plumbing system by using passive and active refraction/reflection seismic methods. This experiment included activities both on-land and offshore with the main objective of obtaining a new high-resolution seismic tomography to improve the knowledge of the crustal structures existing beneath the Etna volcano and northeast Sicily up to Aeolian Islands. The TOMO ETNA experiment was divided in two phases. The first phase started on June 15, 2014 and finalized on July 24, 2014, with the withdrawal of two removable seismic networks (a Short Period Network and a Broadband network composed by 80 and 20 stations respectively) deployed at Etna volcano and surrounding areas. During this first phase the oceanographic research vessel “Sarmiento de Gamboa” and the hydro-oceanographic vessel “Galatea” performed the offshore activities, which includes the deployment of ocean bottom seismometers (OBS), air-gun shooting for Wide Angle Seismic refraction (WAS), Multi-Channel Seismic (MCS) reflection surveys, magnetic surveys and ROV (Remotely Operated Vehicle) dives. This phase finished with the recovery of the short period seismic network. In the second phase the Broadband seismic network remained operative until October 28, 2014, and the R/V “Aegaeo” performed additional MCS surveys during November 19-27, 2014. Overall, the information deriving from TOMO-ETNA experiment could provide the answer to many uncertainties that have arisen while exploiting the large amount of data provided by the cutting-edge monitoring systems of Etna volcano and seismogenic area of eastern Sicily.
Resumo:
SpicA FAR infrared Instrument, SAFARI, is one of the instruments planned for the SPICA mission. The SPICA mission is the next great leap forward in space-based far-infrared astronomy and will study the evolution of galaxies, stars and planetary systems. SPICA will utilize a deeply cooled 2.5m-class telescope, provided by European industry, to realize zodiacal background limited performance, and high spatial resolution. The instrument SAFARI is a cryogenic grating-based point source spectrometer working in the wavelength domain 34 to 230 μm, providing spectral resolving power from 300 to at least 2000. The instrument shall provide low and high resolution spectroscopy in four spectral bands. Low Resolution mode is the native instrument mode, while the high Resolution mode is achieved by means of a Martin-Pupplet interferometer. The optical system is all-reflective and consists of three main modules; an input optics module, followed by the Band and Mode Distributing Optics and the grating Modules. The instrument utilizes Nyquist sampled filled linear arrays of very sensitive TES detectors. The work presented in this paper describes the optical design architecture and design concept compatible with the current instrument performance and volume design drivers.
Resumo:
Mapping of elements in biological tissue by laser induced mass spectrometry is a fast growing analytical methodology in life sciences. This method provides a multitude of useful information of metal, nonmetal, metalloid and isotopic distribution at major, minor and trace concentration ranges, usually with a lateral resolution of 12-160 µm. Selected applications in medical research require an improved lateral resolution of laser induced mass spectrometric technique at the low micrometre scale and below. The present work demonstrates the applicability of a recently developed analytical methodology - laser microdissection associated to inductively coupled plasma mass spectrometry (LMD ICP-MS) - to obtain elemental images of different solid biological samples at high lateral resolution. LMD ICP-MS images of mouse brain tissue samples stained with uranium and native are shown, and a direct comparison of LMD and laser ablation (LA) ICP-MS imaging methodologies, in terms of elemental quantification, is performed.
Resumo:
Objective: We aimed to investigate the efficacy of 20 Hz repetitive transcranial magnetic stimulation (rTMS) of either right or left dorsolateral prefrontal cortex (DLPFC) as compared to sham rTMS for the relief of posttraumatic stress disorder (PTSD)-associated symptoms. Method: In this double-blind, placebo-controlled phase II trial conducted between October 2005 and July 2008, 30 patients with DSM-IV-diagnosed PTSD were randomly assigned to receive 1 of the following treatments: active 20 Hz rTMS of the right DLPFC, active 20 Hz rTMS of the left DLPFC, or sham rTMS. Treatments were administered in 10 daily sessions over 2 weeks. A blinded rater assessed severity of core PTSD symptoms, depression, and anxiety before, during, and after completion of the treatment protocol. In addition, a battery of neuropsychological tests was measured before and after treatment. Results: Results show that both active conditions-20 Hz rTMS of left and right DLPFC induced a significant decrease in PTSD symptoms as indexed by the PTSD Checklist and Treatment Outcome PTSD Scale; however, right rTMS induced a larger effect as compared to left rTMS. In addition, there was a significant improvement of mood after left rTMS and a significant reduction of anxiety following right rTMS. Improvements in PTSD symptoms were long lasting; effects were still significant at the 3-month follow-up. Finally, neuropsychological evaluation showed that active 20 Hz rTMS is not associated with cognitive worsening and is safe for use in patients with PTSD. Conclusions: These results support the notion that modulation of prefrontal cortex can alleviate the core symptoms of PTSD and suggest that high-frequency rTMS of right DLPFC might be the optimal treatment strategy. J an Psychiatry 2010;71(8):992-999 (C) Copyright 2009 Physicians Postgraduate Press, Inc.
Resumo:
Dissertation presented at the Faculty of Science and Technology of the New University of Lisbon in fulfillment of the requirements for the Masters degree in Electrical Engineering and Computers
Resumo:
Brain dopamine transporters imaging by Single Emission Tomography (SPECT) with 123I-FP-CIT (DaTScanTM) has become an important tool in the diagnosis and evaluation of Parkinson syndromes.This diagnostic method allows the visualization of a portion of the striatum – where healthy pattern resemble two symmetric commas - allowing the evaluation of dopamine presynaptic system, in which dopamine transporters are responsible for dopamine release into the synaptic cleft, and their reabsorption into the nigrostriatal nerve terminals, in order to be stored or degraded. In daily practice for assessment of DaTScan TM, it is common to rely only on visual assessment for diagnosis. However, this process is complex and subjective as it depends on the observer’s experience and it is associated with high variability intra and inter observer. Studies have shown that semiquantification can improve the diagnosis of Parkinson syndromes. For semiquantification, analysis methods of image segmentation using regions of interest (ROI) are necessary. ROIs are drawn, in specific - striatum - and in nonspecific – background – uptake areas. Subsequently, specific binding ratios are calculated. Low adherence of semiquantification for diagnosis of Parkinson syndromes is related, not only with the associated time spent, but also with the need of an adapted database of reference values for the population concerned, as well as, the examination of each service protocol. Studies have concluded, that this process increases the reproducibility of semiquantification. The aim of this investigation was to create and validate a database of healthy controls for Dopamine transporters with DaTScanTM named DBRV. The created database has been adapted to the Nuclear Medicine Department’s protocol, and the population of Infanta Cristina’s Hospital located in Badajoz, Spain.
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Engenharia Clínica)
Resumo:
Glucose metabolism is difficult to image with cellular resolution in mammalian brain tissue, particularly with (18) fluorodeoxy-D-glucose (FDG) positron emission tomography (PET). To this end, we explored the potential of synchrotron-based low-energy X-ray fluorescence (LEXRF) to image the stable isotope of fluorine (F) in phosphorylated FDG (DG-6P) at 1 μm(2) spatial resolution in 3-μm-thick brain slices. The excitation-dependent fluorescence F signal at 676 eV varied linearly with FDG concentration between 0.5 and 10 mM, whereas the endogenous background F signal was undetectable in brain. To validate LEXRF mapping of fluorine, FDG was administered in vitro and in vivo, and the fluorine LEXRF signal from intracellular trapped FDG-6P over selected brain areas rich in radial glia was spectrally quantitated at 1 μm(2) resolution. The subsequent generation of spatial LEXRF maps of F reproduced the expected localization and gradients of glucose metabolism in retinal Müller glia. In addition, FDG uptake was localized to periventricular hypothalamic tanycytes, whose morphological features were imaged simultaneously by X-ray absorption. We conclude that the high specificity of photon emission from F and its spatial mapping at ≤1 μm resolution demonstrates the ability to identify glucose uptake at subcellular resolution and holds remarkable potential for imaging glucose metabolism in biological tissue. © 2012 Wiley Periodicals, Inc.
Resumo:
Low energy x-ray fluorescence (LEXRF) detection was optimized for imaging cerebral glucose metabolism by mapping the fluorine LEXRF signal of 19 F in 19 FDG, trapped as intracellular 19 F-deoxyglucose-6-phosphate ( 19 FDG-6P) at 1μm spatial resolution from 3μm thick brain slices. 19 FDG metabolism was evaluated in brain structures closely resembling the general cerebral cytoarchitecture following formalin fixation of brain slices and their inclusion in an epon matrix. 2-dimensional distribution maps of 19 FDG-6P were placed in a cytoarchitectural and morphological context by simultaneous LEXRF mapping of N and O, and scanning transmission x-ray (STXM) imaging. A disproportionately high uptake and metabolism of glucose was found in neuropil relative to intracellular domains of the cell body of hypothalamic neurons, showing directly that neurons, like glial cells, also metabolize glucose. As 19 F-deoxyglucose-6P is structurally identical to 18 F-deoxyglucose-6P, LEXRF of subcellular 19 F provides a link to in vivo 18 FDG PET, forming a novel basis for understanding the physiological mechanisms underlying the 18 FDG PET image, and the contribution of neurons and glia to the PET signal.
Resumo:
High resolution proton nuclear magnetic resonance spectroscopy (¹H MRS) can be used to detect biochemical changes in vitro caused by distinct pathologies. It can reveal distinct metabolic profiles of brain tumors although the accurate analysis and classification of different spectra remains a challenge. In this study, the pattern recognition method partial least squares discriminant analysis (PLS-DA) was used to classify 11.7 T ¹H MRS spectra of brain tissue extracts from patients with brain tumors into four classes (high-grade neuroglial, low-grade neuroglial, non-neuroglial, and metastasis) and a group of control brain tissue. PLS-DA revealed 9 metabolites as the most important in group differentiation: γ-aminobutyric acid, acetoacetate, alanine, creatine, glutamate/glutamine, glycine, myo-inositol, N-acetylaspartate, and choline compounds. Leave-one-out cross-validation showed that PLS-DA was efficient in group characterization. The metabolic patterns detected can be explained on the basis of previous multimodal studies of tumor metabolism and are consistent with neoplastic cell abnormalities possibly related to high turnover, resistance to apoptosis, osmotic stress and tumor tendency to use alternative energetic pathways such as glycolysis and ketogenesis.
Resumo:
The human striatum is a heterogeneous structure representing a major part of the dopamine (DA) system’s basal ganglia input and output. Positron emission tomography (PET) is a powerful tool for imaging DA neurotransmission. However, PET measurements suffer from bias caused by the low spatial resolution, especially when imaging small, D2/3 -rich structures such as the ventral striatum (VST). The brain dedicated high-resolution PET scanner, ECAT HRRT (Siemens Medical Solutions, Knoxville, TN, USA) has superior resolution capabilities than its predecessors. In the quantification of striatal D2/3 binding, the in vivo highly selective D2/3 antagonist [11C] raclopride is recognized as a well-validated tracer. The aim of this thesis was to use a traditional test-retest setting to evaluate the feasibility of utilizing the HRRT scanner for exploring not only small brain regions such as the VST but also low density D2/3 areas such as cortex. It was demonstrated that the measurement of striatal D2/3 binding was very reliable, even when studying small brain structures or prolonging the scanning interval. Furthermore, the cortical test-retest parameters displayed good to moderate reproducibility. For the first time in vivo, it was revealed that there are significant divergent rostrocaudal gradients of [11C]raclopride binding in striatal subregions. These results indicate that high-resolution [11C]raclopride PET is very reliable and its improved sensitivity means that it should be possible to detect the often very subtle changes occurring in DA transmission. Another major advantage is the possibility to measure simultaneously striatal and cortical areas. The divergent gradients of D2/3 binding may have functional significance and the average distribution binding could serve as the basis for a future database. Key words: dopamine, PET, HRRT, [11C]raclopride, striatum, VST, gradients, test-retest.