914 resultados para Hybridation in situ de fluorescence
Resumo:
The phytoplanktivorous silver carp is an important biomanipulation fish to control cyanobacterial blooms and is also a food fish with the greatest production in China. The accumulation of the hepatotoxic microcystins (MCs) determined by LC-MS in various organs of silver carp was studied monthly in Lake Taihu dominated by toxic Microcystis aeruginosa. Average recoveries of spiked fish samples were 78% for MC-RR and 81% for MC-LR. The highest content of MCs was found in the intestine (97.48 mu g g(-1) DW), followed by liver (6.84 mu g g(-1) DW), kidney (4.8 8 mu g g(-1) DW) and blood (1.54 mu g g(-1) DW), and the annual mean MC content was in the order of intestine > liver > kidney > blood > muscle > spleen > gallbladder > gill. Silver carp could effectively ingest toxic Microcystis cells (up to 84.4% of total phytoplankton in gut contents), but showed fast growth (from 141 g to 1759 g in I year in mean weight). Silver carp accumulated less microcystins in liver than other animals in the same site or other fish from different water bodies at similar level of toxin ingestion. There was possible inhibition of the transportation of the most toxic MC-LR across the gutwall. Muscle of silver carp in Lake Taihu should not be consumed during period of dense Microcystis blooms while viscera were risky for consumption in more months. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The icefish (Neosalanx taihuensis) of Lake Chaohu, China, foraged almost exclusively on crustacean zooplankton in both spring and summer. The icefish showed diurnal feeding periodicity, with peak feeding in the morning. No food was observed in icefish guts collected at night. Our results indicate that that the icefish was a particulate feeder and light intensity greatly affected its foraging on zooplankton. Daily consumption of zooplankton by icefish varied significantly both diurnally and among seasons, which ranged from 0.22 to 2.23 g (wet weight) per 100 g wet fish weight at temperatures between 16.3 degrees C (spring) and 28.8 degrees C (summer).
Resumo:
BACKGROUND: Despite the widespread use of sensors in engineering systems like robots and automation systems, the common paradigm is to have fixed sensor morphology tailored to fulfill a specific application. On the other hand, robotic systems are expected to operate in ever more uncertain environments. In order to cope with the challenge, it is worthy of note that biological systems show the importance of suitable sensor morphology and active sensing capability to handle different kinds of sensing tasks with particular requirements. METHODOLOGY: This paper presents a robotics active sensing system which is able to adjust its sensor morphology in situ in order to sense different physical quantities with desirable sensing characteristics. The approach taken is to use thermoplastic adhesive material, i.e. Hot Melt Adhesive (HMA). It will be shown that the thermoplastic and thermoadhesive nature of HMA enables the system to repeatedly fabricate, attach and detach mechanical structures with a variety of shape and size to the robot end effector for sensing purposes. Via active sensing capability, the robotic system utilizes the structure to physically probe an unknown target object with suitable motion and transduce the arising physical stimuli into information usable by a camera as its only built-in sensor. CONCLUSIONS/SIGNIFICANCE: The efficacy of the proposed system is verified based on two results. Firstly, it is confirmed that suitable sensor morphology and active sensing capability enables the system to sense different physical quantities, i.e. softness and temperature, with desirable sensing characteristics. Secondly, given tasks of discriminating two visually indistinguishable objects with respect to softness and temperature, it is confirmed that the proposed robotic system is able to autonomously accomplish them. The way the results motivate new research directions which focus on in situ adjustment of sensor morphology will also be discussed.
Resumo:
We demonstrate autonomous construction of structures using a robot arm that can fabricate threads of TPA (Thermoplastic Adhesive) in free space on the fly. TPA has many important material properties that help to greatly simplify the otherwise complex task of building structures in complex environments. We present a model for the formation of TPA strings based on plastic deformation which also includes the temperature dependent material properties which change significantly as the thread is formed and cools. Experiments of drawing TPA show that drawing forces due to the viscosity of the TPA are more dominated by the speed of drawing than the changes in viscosity due to temperature. The load bearing capacity of individual strings is also modelled and measured and structures are built using the TPA strings which due to the adhesiveness can be anchored to a wide range surfaces as well as to other strings. © 2013 IEEE.
Resumo:
The properties of layered inorganic semiconductors can be manipulated by the insertion of foreign molecular species via a process known as intercalation. In the present study, we investigate the phenomenon of organic moiety (R-NH3I) intercalation in layered metal-halide (PbI2)-based inorganic semiconductors, leading to the formation of inorganic-organic (IO) perovskites [(R-NH3)2PbI4]. During this intercalation strong resonant exciton optical transitions are created, enabling study of the dynamics of this process. Simultaneous in situ photoluminescence (PL) and transmission measurements are used to track the structural and exciton evolution. On the basis of the experimental observations, a model is proposed which explains the process of IO perovskite formation during intercalation of the organic moiety through the inorganic semiconductor layers. The interplay between precursor film thickness and organic solution concentration/solvent highlights the role of van der Waals interactions between the layers, as well as the need for maintaining stoichiometry during intercalation. Nucleation and growth occurring during intercalation matches a Johnson-Mehl-Avrami-Kolmogorov model, with results fitting both ideal and nonideal cases.
Resumo:
Common carp Cyprinus carpio genomic DNA repetitive sequence CR1 has been DIG-labeled and hybridized in situ against chromosomes of red common carp (Cyprinus carpio L. Xingguo red var.). It is found that the repetitive sequence CR1 is mainly localized at the centromeric regions of chromosomes of the red common carp, The application of the chromosomal in situ hybridization technique on fish and the relationship between CR1 repetitive sequence distribution and its function have been discussed.
Resumo:
Undoped, S-doped and Fe-doped InP crystals with diameter up to 4-inch have been pulled in drop 10 0 drop -direction under P-rich condition by a rapid P-injection in situ synthesis liquid encapsulated Czochralski (LEC) method. High speed photoluminescence mapping, etch-pit density (EPD) mapping and scanning electron microscopy have been used to characterize the samples of the single crystal ingots. Dislocations and electrical homogeneity of these samples are investigated and compared. By controlling the thermal field and the solid-liquid interface shape, 4-inch low-EPD InP single crystals have been successfully grown by the rapid P-injection synthesis LEC method. The EPD across the wafer of the ingots is less than 5 x 10(4) cm(-2). Cluster defects with a pore center are observed in the P-rich LEC grown InP ingots. These defects are distributed irregularly on a wafer and are surrounded by a high concentration of dislocations. The uniformity of the PL intensity across the wafer is influenced by these defects. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The thermal stability of InN in the growth environment in metalorganic chemical vapor deposition was systematically investigated in situ by laser reflectance system and ex situ by morphology characterization, X-ray diffraction and X-ray photoelectron spectroscopy. It was found that InN can withstand isothermal annealing at temperature as high as 600 degrees C in NH3 ambient. While in N-2 atmosphere, it will decompose quickly to form In-droplets at least at the temperature around 500 degrees C, and the activation energy of InN decomposition was estimated to be 2.1 +/- 0.1 eV. Thermal stability of InN when annealing in NH3 ambient during temperature altering would be very sensitive to ramping rate and NH3 flow rate, and InN would sustain annealing process at small ramping rate and sufficient supply of reactive nitrogen radicals. Whereas In-droplets formation was found to be the most frequently encountered phenomenon concerning InN decomposition, annealing window for conditions free of In-droplets was worked out and possible reasons related are discussed. In addition, InN will decompose in a uniform way in the annealing window, and the decomposition rate was found to be in the range of 50 and 100 nm/h. Hall measurement shows that annealing treatment in such window will improve the electrical properties of InN. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
GaN nanotip triangle pyramids were synthesized on 3C-SiC epilayer via an isoelectronic In-doping technique. The synthesis was carried out in a specially designed two-hot-boat chemical vapor deposition system. In (99.999%) and molten Ga (99.99%) with a mass ratio of about 1:4 were used as the source, and pieces of Si (111) wafer covered with 400-500 nm 3C-SiC epilayer were used as the substrates. The products were analyzed by x-ray diffraction, field emission scanning electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction, Raman spectroscopy, and photoluminescence measurements. Our results show that the as-synthesized GaN pyramids are perfect single crystal with wurtzite structure, which may have potential applications in electronic/photonic devices.
Resumo:
An effective method is developed to fabricate metallic microcircuits in diamond anvil cell (DAC) for resistivity measurement under high pressure. The resistivity of nanocrystal ZnS is measured under high pressure up to 36.4 GPa by using designed DAC. The reversibility and hysteresis of the phase transition are observed. The experimental data is confirmed by an electric current field analysis accurately. The method used here can also be used under both ultrahigh pressure and high temperature conditions.
Resumo:
N-p-n Si/SiGe/Si heterostructures have been grown by a disilane (Si2H6) gas and Ge solid sources molecular beam epitaxy system using phosphine (PH3) and diborane (B2H6) as n- and p-type in situ doping sources, respectively. Adopting an in situ doping control technology, the influence of background B dopant on the growth of n-Si emitter layer was reduced, and an abrupt B dopant distribution from SiGe base to Si emitter layer was obtained. Besides, higher n-type doping in the surface region of emitter to reduce the emitter resist can be realized, and it did not result in the drop of growth rate of Si emitter layer in this technology. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Extremely low density self-assembled InAs quantum dots are grown by a combination technique of in situ annealing for 2 min and pause of substrate rotation during molecular beam epitaxy. The surface morphology and structural characteristics of the quantum dots are scrutinized by atomic force microscopy and photoluminescence spectra. It is found that the quantum dot size and density increase as the InAs deposition amount rises. Quantum dots with a density between 2.5 x 10(7) cm(-2) and 2.2 x 10(8) cm(-2) are 2-5 nm in height and 18-39 nm in diameter. It is believed that as-grown InAs nanodots may be of important value for future single quantum dot research.
Resumo:
Rapid thermal annealing (RTA) has been demonstrated as an important way to improve the crystal quality of GaInNAs(Sb)/GaAs quantum wells. However little investigation has been made into their application in laser growth, especially at a wavelength of 1.55 mu m. When a GaAs-based laser is grown, AlGaAs is usually used for cladding layers. The growth of the p-cladding layer usually takes 30-45 min at a growth temperature higher than that of the GaInNAs(Sb) active region, which affects the material quality. To investigate this effect, various post-growth annealing processes were performed to simulate this process. Great enhancement of the PL intensity was obtained by a two-step process which consisted of annealing first at 700 degrees C for 60 s and then at 600 degrees C for 45 min. We transferred this post-growth annealing to in situ annealing. Finally, a GaInNAsSb laser was grown with a 700 degrees C in situ annealing process. Continuous operation at room temperature of a GaAs-based dilute nitride laser with a wavelength beyond 1.55 mu m was realized for the first time.
Resumo:
Using Al-Mg and Al-Mg-Y alloys as raw materials and nitrogen as gas reactants, AIN powders and composite AIN powders by in-situ synthesis method were prepared. AIN lumps prepared by the nitriding of Al-Mg and Al-Mg-Y alloys have porous microstructure, which is favorable for pulverization. They have high purity, containing 1.23 % (mass fraction) oxygen impurity, and consisted of AIN single phase . The average particle size of AIN powders is 6.78 mum. Composite AlN powders consist of AlN phases and rare, earth oxide Y2O3 phase. The distribution of particle size of AIN powders shows two peaks. In view, of packing factor, AIN powders with such size distribution can easily be sintered to high density.
Resumo:
The heteroepitaxial growth of n-type and p-type 3C-SiC on (0001) sapphire substrates has been performed with a supply of SiH4+C2H4+H-2 system by introducing ammonia (NH3) and diborane (B2H6) precursors, respectively, into gas mixtures. Intentionally incorporated nitrogen impurity levels were affected by changing the Si/C ratio within the growth reactor. As an acceptor, boron can be added uniformly into the growing 3C-SiC epilayers. Nitrogen-doped 3C-SiC epilayers were n-type conduction, and boron-doped epilayers were p-type and probably heavily compensated.