910 resultados para Escape of exotic organisms
Resumo:
Despite significant advances in treatment strategies targeting the underlying defect in cystic fibrosis (CF), airway infection remains an important cause of lung disease. In this two-part series, we review recent evidence related to the complexity of CF airway infection, explore data suggesting the relevance of individual microbial species, and discuss current and future treatment options. In Part I, the evidence with respect to the spectrum of bacteria present in the CF airway, known as the lung microbiome is discussed. Subsequently, the current approach to treat methicillin-resistant Staphylococcus aureus, gram-negative bacteria, as well as multiple coinfections is reviewed. Newer molecular techniques have demonstrated that the airway microbiome consists of a large number of microbes, and the balance between microbes, rather than the mere presence of a single species, may be relevant for disease pathophysiology. A better understanding of this complex environment could help define optimal treatment regimens that target pathogens without affecting others. Although relevance of these organisms is unclear, the pathologic consequences of methicillin-resistant S. aureus infection in patients with CF have been recently determined. New strategies for eradication and treatment of both acute and chronic infections are discussed. Pseudomonas aeruginosa plays a prominent role in CF lung disease, butmany other nonfermenting gram-negative bacteria are also found in the CF airway. Many new inhaled antibiotics specifically targeting P. aeruginosa have become available with the hope that they will improve the quality of life for patients. Part I concludes with a discussion of how best to treat patients with multiple coinfections.
Resumo:
The predatory bacterium Bdellovibrio bacteriovorus uses flagellar motility to locate regions rich in Gram-negative prey bacteria, colliding and attaching to prey and then ceasing flagellar motility. Prey are then invaded to form a "bdelloplast" in a type IV pilus-dependent process, and prey contents are digested, allowing Bdellovibrio growth and septation. After septation, Bdellovibrio flagellar motility resumes inside the prey bdelloplast prior to its lysis and escape of Bdellovibrio progeny. Bdellovibrio can also grow slowly outside prey as long flagellate host-independent (HI) cells, cultured on peptone-rich media. The B. bacteriovorus HD100 genome encodes three pairs of MotAB flagellar motor proteins, each of which could potentially form an inner membrane ion channel, interact with the FliG flagellar rotor ring, and produce flagellar rotation. In 2004, Flannagan and coworkers (R. S. Flannagan, M. A. Valvano, and S. F. Koval, Microbiology 150:649-656, 2004) used antisense RNA and green fluorescent protein (GFP) expression to downregulate a single Bdellovibrio motA gene and reported slowed release from the bdelloplast and altered motility of the progeny. Here we inactivated each pair of motAB genes and found that each pair contributes to motility, both predatorily, inside the bdelloplast and during HI growth; however, each pair was dispensable, and deletion of no pair abolished motility totally. Driving-ion studies with phenamil, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and different pH and sodium conditions indicated that all Mot pairs are proton driven, although the sequence similarities of each Mot pair suggests that some may originate from halophilic species. Thus, Bdellovibrio is a "dedicated motorist," retaining and expressing three pairs of mot genes.
Resumo:
The emergence of multidrug-resistant pathogens within the clinical environment is presenting a mounting problem in hospitals worldwide. The 'ESKAPE' pathogens (Enterococcusfaecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) have been highlighted as a group of causative organisms in a majority of nosocomial infections, presenting a serious health risk due to widespread antimicrobial resistance. The stagnating pipeline of new antibiotics requires alternative approaches to the control and treatment of nosocomial infections. Atmospheric pressure nonthermal plasma (APNTP) is attracting growing interest as an alternative infection control approach within the clinical setting. This study presents a comprehensive bactericidal assessment of an in-house-designed APNTP jet both against biofilms and planktonic bacteria of the ESKAPE pathogens. Standard plate counts and the XTT metabolic assay were used to evaluate the antibacterial effect of APNTP, with both methods demonstrating comparable eradication times. APNTP exhibited rapid antimicrobial activity against all of the ESKAPE pathogens in the planktonic mode of growth and provided efficient and complete eradication of ESKAPE pathogens in the biofilm mode of growth within 360 s, with the exception of A. baumannii where a >4log reduction in biofilm viability was observed. This demonstrates its effectiveness as a bactericidal treatment against these pathogens and further highlights its potential application in the clinical environment for the control of highly antimicrobial-resistant pathogens.
Resumo:
Superluminous supernovae (SLSNe) of Type Ic have a tendency to occur in faint host galaxies which are likely to have low mass and low metallicity. PTF12dam is one of the closest and best-studied superluminous explosions that has a broad and slowly fading light curve similar to SN 2007bi. Here we present new photometry and spectroscopy for PTF12dam from 200-500 d (rest frame) after peak and a detailed analysis of the host galaxy (SDSS J142446.21+461348.6 at z = 0.107). Using deep templates and image subtraction we show that the light curve can be fit with a magnetar model if escape of high-energy gamma rays is taken into account. The full bolometric light curve from -53 to +399 d (with respect to peak) cannot be fit satisfactorily with the pair-instability models. An alternative model of interaction with a dense circumstellar material (CSM) produces a good fit to the data although this requires a very large mass (˜13 M⊙) of hydrogen-free CSM. The host galaxy is a compact dwarf (physical size ˜1.9 kpc) and with Mg = -19.33 ± 0.10, it is the brightest nearby SLSN Ic host discovered so far. The host is a low-mass system (2.8 × 108 M⊙) with a star formation rate (5.0 M⊙ yr-1), which implies a very high specific star formation rate (17.9 Gyr-1). The remarkably strong nebular emission provide detections of the [O III] λ4363 and [O II] λλ7320, 7330auroral lines and an accurate oxygen abundance of 12 + log (O/H) = 8.05 ± 0.09. We show here that they are at the extreme end of the metallicity distribution of dwarf galaxies and propose that low metallicity is a requirement to produce these rare and peculiar SNe.
Resumo:
This paper critically examines the intersections of global tourism and fitness in the Marathon des Sables, an annual ultramarathon in the Sahara desert in which over a thousand athletes run the equivalent of five marathons in six days. It demonstrates how the globalization of health and fitness resonates with familiar Western productions of exotic cultures for the purposes of tourist consumption. Of particular interest here is how established colonial asymmetries are recast in a neoliberal context as runners test their resilience, endurance and strength against an ‘extreme’ Saharan landscape. While the paper calls attention to these asymmetries, it is more concerned with troubling reductive colonial encounters in order to reveal their instability, heterogeneity and ambivalence. Indeed, the central conceit of the Marathon des Sables – that superior Western fitness regimes and technologies will dominate the race – is inverted by the overwhelming success of Moroccan runners and disaggregated by the biopolitical regulation of elite running bodies. These unexpected intersections of global tourism and fitness demand further attention because they reconfigure our received notions of who (and what) is capable of exerting agency in postcolonial encounters.
Resumo:
Biological colonization of stone is a major concern in the preservation and presentation of cultural heritage. Colonization is typically associated with unpleasant soiling, and varying degrees of biodeterioration. A better understanding of why organisms grow where they do, will aid in
developing preventative, and treatment methods for biosoiling of cultural heritage. Sandstone exposure trials were set up at nine different locations across Northern Ireland to investigate the influences of local climate, local environmental,and micro-climatic factors on the early stages (up to 21 months) of biological colonization.
Results showed that, green and yellow soiling occurred on tooled stone surfaces, whereas darkening occurred preferentially on smooth surfaces. It is likely that different populations of organisms occur on these surfaces with green algae occurring on tooled surfaces due to slower drying rates (i.e. prolonged moisture retention), and cyanobacteria and fungi thriving on smooth surfaces due to their ability to withstand moisture fluctuation.
Resumo:
Organophosphonates are ancient molecules that contain the chemically stable C–P bond, which is considered a relic of the reducing atmosphere on primitive earth. Synthetic phosphonates now have a wide range of applications in the agricultural, chemical and pharmaceutical industries. However, the existence of C–P compounds as contemporary biogenic molecules was not discovered until 1959, with the identification of 2-aminoethylphosphonic acid in rumen protozoa. Here, we review advances in our understanding of the biochemistry and genetics of microbial phosphonate metabolism, and discuss the role of these compounds and of the organisms engaged in their turnover within the P cycle.
Resumo:
As estruturas quânticas de semicondutores, nomeadamente baseadas em GaAs, têm tido nos últimos vinte anos um claro desenvolvimento. Este desenvolvimento deve-se principalmente ao potencial tecnológico que estas estruturas apresentam. As aplicações espaciais, em ambientes agressivos do ponto de vista do nível de radiação a que os dispositivos estão sujeitos, motivaram todo o desenrolar de estudos na área dos defeitos induzidos pela radiação. As propriedades dos semicondutores e dos dispositivos de semicondutores são altamente influenciadas pela presença de defeitos estruturais, em particular os induzidos pela radiação. As propriedades dos defeitos, os processos de criação e transformação de defeitos devem ser fortemente alterados quando se efectua a transição entre o semicondutor volúmico e as heteroestruturas de baixa dimensão. Este trabalho teve como principal objectivo o estudo de defeitos induzidos pela radiação em estruturas quânticas baseadas em GaAs e InAs. Foram avaliadas as alterações introduzidas pelos defeitos em estruturas de poços quânticos e de pontos quânticos irradiadas com electrões e com protões. A utilização de várias técnicas de espectroscopia óptica, fotoluminescência, excitação de fotoluminescência e fotoluminescência resolvida no tempo, permitiu caracterizar as diferentes estruturas antes e após a irradiação. Foi inequivocamente constatada uma maior resistência à radiação dos pontos quânticos quando comparados com os poços quânticos e os materiais volúmicos. Esta resistência deve-se principalmente a uma maior localização da função de onda dos portadores com o aumento do confinamento dos mesmos. Outra razão provável é a expulsão dos defeitos dos pontos quânticos para a matriz. No entanto, a existência de defeitos na vizinhança dos pontos quânticos promove a fuga dos portadores dos níveis excitados, cujas funções de onda são menos localizadas, provocando um aumento da recombinação nãoradiativa e, consequentemente, uma diminuição da intensidade de luminescência dos dispositivos. O desenvolvimento de um modelo bastante simples para a estatística de portadores fora de equilíbrio permitiu reproduzir os resultados de luminescência em função da temperatura. Os resultados demonstraram que a extinção da luminescência com o aumento da temperatura é determinada por dois factores: a redistribuição dos portadores minoritários entre os pontos quânticos, o poço quântico e as barreiras de GaAs e a diminuição na taxa de recombinação radiativa relacionada com a dependência, na temperatura, do nível de Fermi dos portadores maioritários.
Resumo:
Sea salt is a natural product obtained from the evaporation of seawater in saltpans due to the combined effect of wind and sunlight. Nowadays, there is a growing interest for protection and re-valorisation of saltpans intrinsically associated to the quality of sea salt that can be evaluated by its physico-chemical properties. These man-made systems can be located in different geographical areas presenting different environmental surroundings. During the crystallization process, organic compounds coming from these surroundings can be incorporated into sea salt crystals, influencing their final composition. The organic matter associated to sea salt arises from three main sources: algae, surrounding bacterial community, and anthropogenic activity. Based on the hypothesis that sea salt contains associated organic compounds that can be used as markers of the product, including saltpans surrounding environment, the aim of this PhD thesis was to identify these compounds. With this purpose, this work comprised: 1) a deep characterisation of the volatile composition of sea salt by headspace solid phase microextraction combined with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (HS-SPME/GCGC–ToFMS) methodology, in search of potential sea salt volatile markers; 2) the development of a methodology to isolate the polymeric material potentially present in sea salt, in amounts that allow its characterisation in terms of polysaccharides and protein; and 3) to explore the possible presence of triacylglycerides. The high chromatographic resolution and sensitivity of GC×GC–ToFMS enabled the separation and identification of a higher number of volatile compounds from sea salt, about three folds, compared to unidimentional chromatography (GC–qMS). The chromatographic contour plots obtained revealed the complexity of marine salt volatile composition and confirmed the relevance of GC×GC–ToFMS for this type of analysis. The structured bidimentional chromatographic profile arising from 1D volatility and 2D polarity was demonstrated, allowing more reliable identifications. Results obtained for analysis of salt from two locations in Aveiro and harvested over three years suggest the loss of volatile compounds along the time of storage of the salt. From Atlantic Ocean salts of seven different geographical origins, all produced in 2007, it was possible to identify a sub-set of ten compounds present in all salts, namely 6-methyl-5-hepten-2-one, 2,2,6-trimethylcyclohexanone, isophorone, ketoisophorone, β-ionone-5,6-epoxide, dihydroactinidiolide, 6,10,14-trimethyl-2-pentadecanone, 3-hydroxy-2,4,4-trimethylpentyl 2-methylpropanoate, 2,4,4-trimethylpentane-1,3-diyl bis(2-methylpropanoate), and 2-ethyl-1-hexanol. These ten compounds were considered potential volatile markers of sea salt. Seven of these compounds are carotenoid-derived compounds, and the other three may result from the integration of compounds from anthropogenic activity as metabolites of marine organisms. The present PhD work also allowed the isolation and characterisation, for the first time, of polymeric material from sea salt, using 16 Atlantic Ocean salts. A dialysis-based methodology was developed to isolate the polymeric material from sea salt in amounts that allowed its characterisation. The median content of polymeric material isolated from the 16 salts was 144 mg per kg of salt, e.g. 0.014% (w/w). Mid-infrared spectroscopy and thermogravimetry revealed the main occurrence of sulfated polysaccharides, as well as the presence of protein in the polymeric material from sea salt. Sea salt polysaccharides were found to be rich in uronic acid residues (21 mol%), glucose (18), galactose (16), and fucose (13). Sulfate content represented a median of 45 mol%, being the median content of sulfated polysaccharides 461 mg/g of polymeric material, which accounted for 66 mg/kg of dry salt. Glycosidic linkage composition indicates that the main sugar residues that could carry one or more sulfate groups were identified as fucose and galactose. This fact allowed to infer that the polysaccharides from sea salt arise mainly from algae, due to their abundance and composition. The amino acid profile of the polymeric material from the 16 Atlantic Ocean salts showed as main residues, as medians, alanine (25 mol%), leucine (14), and valine (14), which are hydrophobic, being the median protein content 35 mg/g, i.e. 4,9 mg per kg of dry salt. Beside the occurrence of hydrophobic volatile compounds in sea salt, hydrophobic non-volatile compounds were also detected. Triacylglycerides were obtained from sea salt by soxhlet extraction with n-hexane. Fatty acid composition revealed palmitic acid as the major residue (43 mol%), followed by stearic (13), linolenic (13), oleic (12), and linoleic (9). Sea salt triacylglycerides median content was 1.5 mg per kg of dry salt. Both protein and triacylglycerides seem to arise from macro and microalgae, phytoplankton and cyanobacteria, due to their abundance and composition. Despite the variability resulting from saltpans surrounding environment, this PhD thesis allowed the identification of a sea salt characteristic organic compounds profile based on volatile compounds, polysaccharides, protein, and triacylglycerides.
Resumo:
Water use invariably results in major impacts on river flows. Environmental Flows (EF) are defined as the quantity and quality of water that is needed to preserve the structure and the function of the river and riparian zone ecosystem and sufficient quantity of water to enable the survival and reproduction of aquatic organisms in different hydraulic habitats. This paper describes the criteria and methods used to determine EF and experiences with their application in Slovenia. The diversity of running waters of Slovenia demand special treatment and determination of EF for each individual section of the river system. Using hydrological, morphological and ecological criteria, two different approaches are used for the determination of EF in Slovenia, a rapid assessment method and a detailed assessment method. For both methods, data are then analyzed by an expert panel in order to determine an EF. Since 1994, more than 180 study sites have been examined for research and application of EF in Slovenia. Determination of EF for existing users has prioritized their water requirements so they can remain economically viable. Where new schemes are proposed, there has been much greater scope to prioritize ecosystem requirements. EF determination is receiving growing attention and will continue to increase in importance, driven by research that aids our understanding of flow-biota relationships and recent environmental policy and legislation at both the national and European level.
Resumo:
Dissertação para a obtenção de grau de doutor em Bioquímica pelo Instituto de Tecnologia Química e Biológica. Universidade Nova de Lisboa
Resumo:
This project has two different goals, one of them is to promote the consumption of exotic fruits with high quality. The other goal of the project is to look for the viability of turning this work project into a real business, focusing in two different channels to diversify its revenues: B2B and B2C. In order to achieve this second goal, this project aims to see the best way to commercialize this product (Lucuma powder and Pulp of Lucuma) and how to make it in an efficient way with right companies. Therefore, the project aims to create a company to commercialize the product between the producers in Peru and possibly small businesses interested in acquire the processed fruit and also individuals interested in own consumption in small quantities. This project, if successful, tries to diversify the consumption into other good organic healthy products in the long-term.
Resumo:
We analyzed 42 models from 14 brands of refill liquids for e-cigarettes for the presence of micro-organisms, diethylene glycol, ethylene glycol, hydrocarbons, ethanol, aldehydes, tobacco-specific nitrosamines, and solvents. All the liquids under scrutiny complied with norms for the absence of yeast, mold, aerobic microbes, Staphylococcus aureus, and Pseudomonas aeruginosa. Diethylene glycol, ethylene glycol and ethanol were detected, but remained within limits authorized for food and pharmaceutical products. Terpenic compounds and aldehydes were found in the products, in particular formaldehyde and acrolein. No sample contained nitrosamines at levels above the limit of detection (1 μg/g). Residual solvents such as 1,3-butadiene, cyclohexane and acetone, to name a few, were found in some products. None of the products under scrutiny were totally exempt of potentially toxic compounds. However, for products other than nicotine, the oral acute toxicity of the e-liquids tested seems to be of minor concern. However, a minority of liquids, especially those with flavorings, showed particularly high ranges of chemicals, causing concerns about their potential toxicity in case of chronic oral exposure.
Resumo:
Coxiella burnetii and members of the genus Rickettsia are obligate intracellular bacteria. Since cultivation of these organisms requires dedicated techniques, their diagnosis usually relies on serological or molecular biology methods. Immunofluorescence is considered the gold standard to detect antibody-reactivity towards these organisms. Here, we assessed the performance of a new automated epifluorescence immunoassay (InoDiag) to detect IgM and IgG against C. burnetii, Rickettsia typhi and Rickettsia conorii. Samples were tested with the InoDiag assay. A total of 213 sera were tested, of which 63 samples from Q fever, 20 from spotted fever rickettsiosis, 6 from murine typhus and 124 controls. InoDiag results were compared to micro-immunofluorescence. For acute Q fever, the sensitivity of phase 2 IgG was only of 30% with a cutoff of 1 arbitrary unit (AU). In patients with acute Q fever with positive IF IgM, sensitivity reached 83% with the same cutoff. Sensitivity for chronic Q fever was 100% whereas sensitivity for past Q fever was 65%. Sensitivity for spotted Mediterranean fever and murine typhus were 91% and 100%, respectively. Both assays exhibited a good specificity in control groups, ranging from 79% in sera from patients with unrelated diseases or EBV positivity to 100% in sera from healthy patients. In conclusion, the InoDiag assay exhibits an excellent performance for the diagnosis of chronic Q fever but a very low IgG sensitivity for acute Q fever likely due to low reactivity of phase 2 antigens present on the glass slide. This defect is partially compensated by the detection of IgM. Because it exhibits a good negative predictive value, the InoDiag assay is valuable to rule out a chronic Q fever. For the diagnosis of rickettsial diseases, the sensitivity of the InoDiag method is similar to conventional immunofluorescence.
Resumo:
The studies were conducted in nine stations with varying ecological characteristics along Cochin backwaters and adjoining canals. Many workers opined that the distribution of rotifers is cosmopolitan. The significance of rotifers as first food for early larvae was indicated by Fujita. Aquaculture is a fast growing field in fisheries sector and it is gaining more importance as the fish landings and supply are getting irregular. A consistent supply of fish/shellfish can only be achieved through aquaculture. The success of any culture activity depends on the timely production of seeds of finfishes/shellfishes. The availability of wild seed is seasonal and erratic. So, a dependable source of seed of fishes and shellfishes is possible only through large scale production in hatchery. A successful seed production activity depends on the availability of a variety of suitable live feed organisms in sufficient quantities at the proper time for use in the larval stages. As the live feeds promote high growth rates, easy digestion, assimilation and the quality of not contaminating the culture water when compared to other artificial feeds, make the culture of live feed organisms the principal means of providing food for the larvae of finfishes and shellfishes. Rotifers are considered to be an excellent and indispensable food for larvae of many finfishes and crustaceans. It (1960) was the first to culture Brachionus plicatilis for feeding marine fish larvae, and now it is being extensively used as live feed in hatcheries all over the world. They are a group of microscopic organisms coming under the Phylum Rotifera which comprises of about 2000 species. Their slow swimming habits, ability to tolerate a wide range of salinities, parthenogenetic mode of reproduction and ability to get enriched easily, make rotifers an ideal live feed organism. The major factors such as temperature, salinity and food that influence the reproductive potential and thereby the population size of rotifer, Salinity is one of the most important aspect influencing the reproductive rate of rotifers. The feed type and feed concentration play a vital role in influencing the reproductive rate of rotifers. For culture of rotifers, the commonly used micro algae belong to Chlorella, Nannochloropsis, Isochrysis and Tetraselmis. While some studies have suggested that, algal diet has little effect on reproductive rates in 1979 while using the rotifer, Brachionus plicatilis as feed for the larvae of red sea bream, Pagrus major. It is generally accepted that rotifers play a pivotal role in the successful rearing of marine fish larvae.