891 resultados para EDGE DISLOCATIONS
Resumo:
The dislocations and precipitates in SI-GaAs single crystals are revealed by ultrasonic-aided Abrahams-Buiocchi etching (USAB), and the etch pits are observed and measured by metalloscope and scanning electron microscope (SEM) equipped with an energy dispersive X-ray spectrometer (EDS), respectively. The size of etch pit revealed by USAB etching is about 1 order of magnitude smaller than that revealed by molten KOH. The amount of arsenic atoms in the dislocation-dense zone is about 1% larger than that in an adjacent dislocation-free zone measured by EDS attached to SEM, which indicates that the excess arsenic atoms adjacent to the dislocation-dense zone are attracted to the dislocations and precipitate there due to the deformation energy.
Resumo:
The effect of GaAs cap layer with different thicknesses in the GaAs/In0.3Ga0.7As/GaAs heterostructure on misfit dislocation is investigated with transmission electron microscopy, and it is found that lines of misfit dislocation break up and move out of the structure when the GaAs cap layer thickness exceeds a certain amount. The breaking up and moving out of misfit dislocations, initially confined in the (001) substrate/InGaAs epilayer interface, occur mainly along the [110] direction on the interface in the structure. (C) 1995 American Institute of Physics.
Resumo:
A Geiger mode planar InGaAs/InP avalanche photodiode (APD) with a cascade peripheral junction structure to suppress edge breakdowns is designed by finite-element analysis. The photodiode breakdown voltage is reduced to 54.3V by controlling the central junction depth, while the electric field distribution along the device central axis is controlled by adjusting doping level and thickness of the lnP field control layer. Using a cascade junction structure at the periphery of the active area, premature edge breakdowns are effectively suppressed. The simulations show that the quadra-cascade structure is a good trade-off between suppression performance and fabrication complexity, with a reduced peak electric field of 5.2 × 10~5 kV/cm and a maximum hole ionization integral of 1. 201. Work presented in this paper provides an effective way to design high performance photon counting InGaAs/InP avalanche photodiodes.
Resumo:
Thick GaN films were grown on GaN/sapphire template in a vertical HVPE reactor. Various material characterization techniques,including AFM, SEM, XRD, RBS/Channeling, CL, PL, and XPS, were used to characterize these GaN epitaxial films. It was found that stepped/terraced structures appeared on the film surface,which were indicative of a nearly step-flow mode of growth for the HVPE GaN despite the high growth rate. A few hexagonal pits appeared on the surface, which have strong light emission. After being etched in molten KOH, the wavy steps disappeared and hexagonal pits with {1010} facets appeared on the surface. An EPD of only 8 ×10~6cm~(-2) shows that the GaN film has few dislocations. Both XRD and RBS channeling indicate the high quality of the GaN thick films. Sharp band-edge emission with a full width at half maximum(FWHM)of 67meV was observed, while the yellow and infrared emissions were also found. These emissions are likely caused by native defects and C and O impurities.
Resumo:
A 1.3μm low-threshold edge-emitting AlGaInAs multiple-quantum-well(MQW) laser with AlInAs-oxide confinement layers is fabricated.The Al-contained waveguide layers upper and low the active layers are oxidized as current-confined layers using wet-oxidation technique.This structure provides excellent current and optical confinement,resulting in 12.9mA of a low continuous wave threshold current and 0.47W/A of a high slope efficiency of per facet at room temperature for a 5-μm-wide current aperture.Compared with the ridge waveguide laser with the same-width ridge,the threshold current of the AlInAs-oxide confinement laser has decreased by 31.7% and the slope efficiency has increased a little.Both low threshold and high slope efficiency indicate that lateral current confinement can be realized by oxidizing AlInAs waveguide layers.The full width of half maximum angles of the Al-InAs-oxide confinement laser are 21.6° for the horizontal and 36.1° for the vertical,which demonstrate the ability of the AlInAs oxide in preventing the optical field from spreading laterally.
Resumo:
Using Transmission Electron Microscopy, we studied the misfit and threading dislocations in InAs epilayers. All the samples, with thickness around 0.5 mu m, were grown on GaAs(001) substrates by molecular beam epitaxy under As-rich or in-rich conditions. The As-rich growth undergoes 2D-3D mode transition process, which was inhibited under In-rich surface. High step formation energy under As-deficient reconstruction inhibits the formation of 3D islands and leads to 2D growth. The mechanism of misfit dislocations formation was different under different growth condition which caused the variation of threading dislocation density in the epilayers.
Resumo:
In resin transfer molding processes, small clearances exist between the fiber preform and the mold edges, which result in a preferential resin flow in the edge channel and then disrupt the flow patterns during the mold filling stage. A mathematical model including the effect of cavity thickness on resin flow was developed for flow behavior involving the interface between an edge channel and a porous medium. According to the mathematical analysis of momentum equations in a fully developed rectangular duct and formulations of the equivalent edge permeability, comparing with three-dimensional Navier-Stokes equations, the governing equations were modified in the edge channel. The volume of fluid (VOF) method was applied to track the flow front. A simple case is numerically simulated using the modified governing equations. The effects of edge channel width and cavity thickness on flow front and inlet pressure are analyzed, and the evolution characteristics of simulated results are in agreement with the experimental results. (c) 2007 Elsevier B.V. All rights reserved
Resumo:
A refined version of the edge-to-edge matching model is described here. In the original model, the matching directions were obtained from the planes with all the atomic centers that were exactly in the plane, or the distance from the atomic center to the plane which was less than the atomic radius. The direction-matching pairs were the match of straight rows-straight rows and zigzag rows-zigzag rows. In the refined model, the matching directions were obtained from the planes with all the atomic centers that were exactly in the plane.
Resumo:
Tetraoctyl-substituted vanadyl phthalocyanine (OVPc4C8) as a new NIR-absorbing discotic liquid crystalline material can form highly ordered thin films with edge-on alignment of the molecules and molecular packing mode identical to that in the phase II of OVPc for solution processed OTFTs with mobility up to 0.017 cm(2) V-1 s(-1).
Resumo:
Reactive mold filling is one of the important stages in resin transfer molding processes, in which resin curing and edge effects are important characteristics. On the basis of previous work, volume-averaging momentum equations involving viscous and inertia terms were adopted to describe the resin flow in fiber preform, and modified governing equations derived from the Navier-Stokes equations are introduced to describe the resin flow in the edge channel. A dual-Arrhenius viscosity model is newly introduced to describe the chemorheological behavior of a modified bismaleimide resin. The influence of the curing reaction and processing parameters on the resin flow patterns was investigated.
Resumo:
The transition of lamellar crystal orientation from flat-on to edge-on in ultrathin films of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) via solvent vapor (toluene) treatment Was investigated. When the as-prepared film was treated in saturated solvent vapor, breakout crystals could form quickly, and then they transformed from square single crystals (flat-on lamellae) to dendrites and finally to nanowire crystals (edge-on lamellae). Initially, heterogeneous nucleation tit the polymer/substrate interface dominated the structure evolution, leading to flat-on lamellar crystals orientation. And the transition from faceted habits to dendrites indicated a transition of underlying mechanism from nucleation-controlled to diffusion-limited growth. As the solvent molecules gradually diffused into the polymer/substrate interface, it will subsequently weaken the polymer-substrate interaction.
Resumo:
In the present work, the edge-to-edge matching model has been introduced to predict the orientation relationships (OR) between the MgZn2 phase which has hexagonal close packed (HCP) structure and the HCP a-Mg matrix. Based on the crystal structures and lattice parameters only, the model has predicted the two most preferred ORs and they are: (1) [1 1 2 3](alpha-Mg) vertical bar vertical bar]1 1 2 3](alpha-Mg), (0 0 0 1)(alpha-Mg) 0.27 degrees from (0 0 0 1)(MgZn2), (1 0 1 1)(alpha-Mg) 26.18 degrees from (1 1 2 2)(MgZn2), (2) [1 0 1 0](alpha-Mg),vertical bar vertical bar[1 1 2 0](MgZn2), (0 0 0 1)(alpha-Mg) vertical bar vertical bar(0 0 0 1)(MgZn2), (1 0 1 1)(alpha-Mg) 3.28 degrees from ( 1 1 2 2)(MgZn2). Four experimental ORs have been reported in the alpha-Mg/MgZn2 system, and the most frequently reported one is ideally the OR (2). The other three experimental ORs are near versions of the OR (2). The habit plane of the OR (2) has been predicted and it agrees well with the experimental results.
Resumo:
A novel edge degree f(i) for heteroatom and multiple bonds in molecular graph is derived on the basis of the edge degree delta(e(r)). A novel edge connectivity index F-m is introduced. The multiple linear regression by using the edge connectivity index F-m and alcohol-type parameter delta, alcohol-distance parameter L can provide high-quality QSPR models for the normal boiling points (BPs), molar volumes (MVs), molar refraction (MRs), water solubility(log(1/S)) and octanol/water partition (logP) of alcohols with up to 17 non-hydrogen atoms. The results imply that these physical properties may be expressed as a liner combination of the edge connectivity index and alcohol-type parameter, 6, alcohol-distance parameter, L. For the models of the five properties, the correlation coefficient r and the standard errors are 0.9969,3.022; 0.9993, 1.504; 0.9992, 0.446; 0.9924,0.129 and 0.9973,0.123 for BPs, MVs, MRs, log(1/S) and logP, respectively. The cross-validation by using the leave-one-out method demonstrates the models to be highly reliable from the point of view of statistics.