580 resultados para Dynamisches Verhalten
Resumo:
Für diese Arbeit wurden sechs neue Benzodiazepinderivate, TC07, TC08, TC09, TC10, TC11 und TC12, hergestellt. Diese wurden mittels Radioligandenbindungsassay sowohl auf ihre Bindungseigenschaften für Membranen des Cerebellum, des Hippo-campus und des Cortex der Ratte hin untersucht, als auch für Membranen von HEK293 Zellen, die transient rekombinante GABAA Rezeptoren exprimierten. Zusätz-lich wurden kompetitive in situ Rezeptorautoradiographien an Rattenhirnschnitten mit den Liganden [3H]Ro15-4513 und [3H]R015-1788 durchgeführt. Zusammen ergaben sich aus diesen Experimenten deutliche Hinweise auf eine Selektivität der Verbindun-gen TC07, TC11 und TC12 für a5-Untereinheiten enthaltende GABAA Rezeptoren mit a5-Affinitäten im niedrigen nanomolaren Bereich. In vivo Bindungsexperimente in Ratten, mit [3H]Ro15-1788 als Tracer und TC07 als Kompetitor, ergaben, dass TC07 mehr [3H]Ro15-1788 im Vorderhirn als im Cerebellum verdrängt. Bezog man die regionale Verteilung der a5-Untereinheit des GABAA Rezep-tors im Rattenhirn mit ein – sehr wenige a5-Untereinheiten im Cerebellum, etwa 20 % der GABAA Rezeptor-Untereinheiten im Hippocampus – untermauerten diese Ergeb-nisse die Vermutung, TC07 könne a5-selektiv sein. Diese Daten bestätigten darü-berhinaus, dass TC07 die Blut-Hirn-Schranke passieren kann. Für elektrophysiologische Messungen mit TC07 und TC12 wurden die oben erwähnten transient transfizierten HEK293 Zellen verwendet, welche die GABAA Rezeptor Unte-reinheitenkombination a5b3g2 exprimierten. Das Dosis-Antwort Verhalten ergab keinen signifikanten Effekt für TC12. Die Daten von TC07 dagegen lassen auf einen schwach negativ modulatorischen Effekt schließen, was, zumindest theoretisch, die Möglichkeit eröffnet, TC07 auch als sogenannten cognitive enhancer einzusetzen. Der errechnete Ki-Wert lag in derselben Größenordnung wie der Ki-Wert, der anhand der Bindungsas-saydaten errechnet wurde. Insgesamt rechtfertigen die bisherigen Ergebnisse die radiochemische Markierung mit 18F von drei der sechs getesteten Verbindungen in der Reihenfolge TC07, TC12 und TC11. Des Weiteren wurde [18F]MHMZ, ein potentiell 5-HT2A selektiver Ligand und PET-Tracer einschließlich Vorläufer und Referenzverbindungen, mit hohen Ausbeuten syn-thetisiert (Herth, Debus et al. 2008). Autoradiographieexperimente mit Rattenhirn-schnitten zeigten hervorragende in situ Bindungseigenschaften der neuen Verbindung. Die Daten wiesen eine hohe Selektivität für 5-HT2A Rezeptoren in Verbindung mit einer niedrigen unspezifischen Bindung auf. [18F]MHMZ erfährt in vivo eine schnelle Metabo-lisierung, wobei ein polarer aktiver Metabolit entsteht, welcher vermutlich nicht die Blut-Hirn-Schranke passieren kann. Transversale, sagittale und coronale Kleintier-PET-Bilder des Rattenhirns zeigten eine hohe Anreicherung im frontalen Cortex und im Striatum, während im Cerebellum so gut wie keine Anreicherung festzustellen war. Diese Verteilung deckt sich mit der bekann-ten Verteilung der 5-HT2A Rezeptoren. Die in vivo Anreicherung scheint sich ebenfalls gut mit der Verteilung der in den Autoradiographieexperimenten gemessenen Bindung zu decken. Nach Berechnungen mit dem 4-Parameter Referenzgewebe Modell beträgt das Bindungspotential (BP) für den frontalen Cortex 1,45. Das Cortex zu Cerebellum Verhältnis wurde auf 2,7 nach 30 Minuten Messzeit bestimmt, was bemerkenswert nah an den von Lundkvist et al. für [11C]MDL 100907 publizierten Daten liegt. Abgesehen von der etwas niedrigeren Affinität waren die gemessenen in vitro, in situ und in vivo Daten denen von [3H]MDL 100907 und [11C]MDL 100907 sehr ähnlich, so dass wir ein [18F]Analogon in der Hand haben, das die bessere Selektivität von MDL 100907 verglichen mit Altanserin mit der längeren Halbwertszeit und den besse-ren Eigenschaften für die klinische Routine von 18F verglichen mit 11C verbindet. Die Ergebnisse von [18F]MHMZ rechtfertigenden weitere Experimente, um diesen Liganden für die klinische Routine am Menschen nutzbar zu machen.
Resumo:
A nanostructured thin film is a thin material layer, usually supported by a (solid) substrate, which possesses subdomains with characteristic nanoscale dimensions (10 ~ 100 nm) that are differentiated by their material properties. Such films have captured vast research interest because the dimensions and the morphology of the nanostructure introduce new possibilities to manipulating chemical and physical properties not found in bulk materials. Block copolymer (BCP) self-assembly, and anodization to form nanoporous anodic aluminium oxide (AAO), are two different methods for generating nanostructures by self-organization. Using poly(styrene-block-methyl methacrylate) (PS-b-PMMA) nanopatterned thin films, it is demonstrated that these polymer nanopatterns can be used to study the influence of nanoscale features on protein-surface interactions. Moreover, a method for the directed assembly of adsorbed protein nanoarrays, based on the nanoscale juxtaposition of the BCP surface domains, is also demonstrated. Studies on protein-nanopattern interactions may inform the design of biomaterials, biosensors, and relevant cell-surface experiments that make use of nanoscale structures. In addition, PS-b-PMMA and AAO thin films are also demonstrated for use as optical waveguides at visible wavelengths. Due to the sub-wavelength nature of the nanostructures, scattering losses are minimized, and the optical response is amenable to analysis with effective medium theory (EMT). Optical waveguide measurements and EMT analysis of the films’ optical anisotropy enabled the in situ characterization of the PS-b-PMMA nanostructure, and a variety of surface processes within the nanoporous AAO involving (bio)macromolecules at high sensitivity.
Resumo:
In dieser Doktorarbeit werden die Eigenschaften von thermoresponsiven Bürstenpolymeren untersucht. Hierbei konnten erstmalig thermische Konformationsübergänge von zylindrischen Bürstenmolekülen auf Oberflächen beobachtet werden. Der Einfluss der Oberfläche auf die Umkehrbarkeit und die Kinetik der Übergänge wurde untersucht. Die dabei erhaltenen Erkenntnisse konnten verwendet werden, um das Verhalten der Polymere auf anderen Oberflächen vorherzusagen. Im zweiten Projekt wurde gezeigt, dass Einzelmolekül-Kraftspektroskopie eine gute Methode für die Untersuchung der mechanischen Eigenschaften von Bürstenpolymeren in guten Lösungsmitteln ist. Mit kleinen Substanzmengen kann die Persistenzlänge der Polymere bestimmt werden. Es ist möglich zu zeigen, dass die Persistenzlänge der Polymerbürsten von ihrer Seitenkettenlänge abhängt. Überraschenderweise funktioniert das Experiment nicht, wenn man die Bürsten aus einem Polymerfilm zieht anstatt ein Einzelmolekülexperiment durchzuführen. In diesem Fall zeigen die Kraft-Abstands-Kurven zu lange Kontur- und Persistenzlängen. Diese Beobachtung ist für lineare Polymere nicht gültig. Im dritten Teil der Doktorarbeit werden Kraft-Abstands-Experimente an einzelnen kollabierten Polymeren untersucht. In schlechten Lösungsmitteln zeigen die Bürsten ein moleküllängenabhängiges Kraft-Plateau, welches theoretisch vorausgesagt wurde und einen Phasenübergang von einem kollabierten zu einem entspannten Zustand der Polymerkette anzeigt. In Fly-Fishing-Experimenten kann man eine Hysterese zwischen den beiden Messkurven beobachten, welche bei mehrfachem Ziehen kleiner wird. Alle Experimente in schlechten Lösungsmitteln wurden mit linearen Polymeren reproduziert, um den Einfluss der Molekülarchitektur von den generellen Eigenschaften von Polymeren in schlechten Lösungsmitteln unterscheiden zu können. Zum Abschluss wird die Abhängigkeit der Polymerentfaltung von der Laderate des Experiments gemessen.
Resumo:
This thesis is concerned with the calculation of virtual Compton scattering (VCS) in manifestly Lorentz-invariant baryon chiral perturbation theory to fourth order in the momentum and quark-mass expansion. In the one-photon-exchange approximation, the VCS process is experimentally accessible in photon electro-production and has been measured at the MAMI facility in Mainz, at MIT-Bates, and at Jefferson Lab. Through VCS one gains new information on the nucleon structure beyond its static properties, such as charge, magnetic moments, or form factors. The nucleon response to an incident electromagnetic field is parameterized in terms of 2 spin-independent (scalar) and 4 spin-dependent (vector) generalized polarizabilities (GP). In analogy to classical electrodynamics the two scalar GPs represent the induced electric and magnetic dipole polarizability of a medium. For the vector GPs, a classical interpretation is less straightforward. They are derived from a multipole expansion of the VCS amplitude. This thesis describes the first calculation of all GPs within the framework of manifestly Lorentz-invariant baryon chiral perturbation theory. Because of the comparatively large number of diagrams - 100 one-loop diagrams need to be calculated - several computer programs were developed dealing with different aspects of Feynman diagram calculations. One can distinguish between two areas of development, the first concerning the algebraic manipulations of large expressions, and the second dealing with numerical instabilities in the calculation of one-loop integrals. In this thesis we describe our approach using Mathematica and FORM for algebraic tasks, and C for the numerical evaluations. We use our results for real Compton scattering to fix the two unknown low-energy constants emerging at fourth order. Furthermore, we present the results for the differential cross sections and the generalized polarizabilities of VCS off the proton.
Resumo:
When non-adsorbing polymers are added to an isotropic suspension of rod-like colloids, the colloids effectively attract each other via depletion forces. Monte Carlo simulations were performed to study the phase diagram of such rod-polymer mixtures. The colloidal rods were modelled as hard spherocylinders; the polymers were described as spheres of the same diameter as the rods. The polymers may overlap with no energy cost, while overlap of polymers and rods is forbidden. In this thesis the emphasis was on the depletion effects caused by the addition of spheres on the isotropic phase of rod-like particles. Although most of the present experimental studies consider systems close to or beyond the isotropic-nematic transition, the isotropic phase with depletion interactions turns out to be a not less interesting topic. First, the percolation problem was studied in canonical simulations of a system of hard rods and soft spheres, where the amount of depletant was kept low to prevent phase separation of the mixture. The lowering of the percolation threshold seen in experiment is confirmed to be due to the depletion interactions. The local changes in the structure of the fluid of rods, which were measured in the simulations, indicated that the depletion forces enhance local alignment and aggregation of the rods. Then, the phase diagram of isotropic-isotropic demixing of short spherocylinders was calculated using grand canonical ensemble simulations with successive umbrella sampling. Finite size scaling analysis allowed to estimate the location of the critical point. Also, estimates for the interfacial tension between the coexisting isotropic phases and analyses of its power-law behaviour on approach of the critical point are presented. The obtained phase diagram was compared to the predictions of the free volume theory. After an analysis of the bulk, the phase behaviour in confinement was studied. The critical point of gas-liquid demixing is shifted to higher concentrations of rods and smaller concentrations of spheres due to the formation of an orientationally ordered surface film. If the separation between the walls becomes very small, the critical point is shifted back to smaller concentrations of rods because the surface film breaks up. A method to calculate the contact angle of the liquid-gas interface with the wall is introduced and the wetting behaviour on the approach to the critical point is analysed.
Resumo:
The optical resonances of metallic nanoparticles placed at nanometer distances from a metal plane were investigated. At certain wavelengths, these “sphere-on-plane” systems become resonant with the incident electromagnetic field and huge enhancements of the field are predicted localized in the small gaps created between the nanoparticle and the plane. An experimental architecture to fabricate sphere-on-plane systems was successfully achieved in which in addition to the commonly used alkanethiols, polyphenylene dendrimers were used as molecular spacers to separate the metallic nanoparticles from the metal planes. They allow for a defined nanoparticle-plane separation and some often are functionalized with a chromophore core which is therefore positioned exactly in the gap. The metal planes used in the system architecture consisted of evaporated thin films of gold or silver. Evaporated gold or silver films have a smooth interface with their substrate and a rougher top surface. To investigate the influence of surface roughness on the optical response of such a film, two gold films were prepared with a smooth and a rough side which were as similar as possible. Surface plasmons were excited in Kretschmann configuration both on the rough and on the smooth side. Their reflectivity could be well modeled by a single gold film for each individual measurement. The film has to be modeled as two layers with significantly different optical constants. The smooth side, although polycrystalline, had an optical response that was very similar to a monocrystalline surface while for the rough side the standard response of evaporated gold is retrieved. For investigations on thin non-absorbing dielectric films though, this heterogeneity introduces only a negligible error. To determine the resonant wavelength of the sphere-on-plane systems a strategy was developed which is based on multi-wavelength surface plasmon spectroscopy experiments in Kretschmann-configuration. The resonant behavior of the system lead to characteristic changes in the surface plasmon dispersion. A quantitative analysis was performed by calculating the polarisability per unit area /A treating the sphere-on-plane systems as an effective layer. This approach completely avoids the ambiguity in the determination of thickness and optical response of thin films in surface plasmon spectroscopy. Equal area densities of polarisable units yielded identical response irrespective of the thickness of the layer they are distributed in. The parameter range where the evaluation of surface plasmon data in terms of /A is applicable was determined for a typical experimental situation. It was shown that this analysis yields reasonable quantitative agreement with a simple theoretical model of the sphere-on-plane resonators and reproduces the results from standard extinction experiments having a higher information content and significantly increased signal-to-noise ratio. With the objective to acquire a better quantitative understanding of the dependence of the resonance wavelength on the geometry of the sphere-on-plane systems, different systems were fabricated in which the gold nanoparticle size, type of spacer and ambient medium were varied and the resonance wavelength of the system was determined. The gold nanoparticle radius was varied in the range from 10 nm to 80 nm. It could be shown that the polyphenylene dendrimers can be used as molecular spacers to fabricate systems which support gap resonances. The resonance wavelength of the systems could be tuned in the optical region between 550 nm and 800 nm. Based on a simple analytical model, a quantitative analysis was developed to relate the systems’ geometry with the resonant wavelength and surprisingly good agreement of this simple model with the experiment without any adjustable parameters was found. The key feature ascribed to sphere-on-plane systems is a very large electromagnetic field localized in volumes in the nanometer range. Experiments towards a quantitative understanding of the field enhancements taking place in the gap of the sphere-on-plane systems were done by monitoring the increase in fluorescence of a metal-supported monolayer of a dye-loaded dendrimer upon decoration of the surface with nanoparticles. The metal used (gold and silver), the colloid mean size and the surface roughness were varied. Large silver crystallites on evaporated silver surfaces lead to the most pronounced fluorescence enhancements in the order of 104. They constitute a very promising sample architecture for the study of field enhancements.
Resumo:
Die Alkoholabhängigkeit gehört zu den häufigen chronischen Erkrankungen, welche mit einem vorzeitigen Verlust von Gesundheit und Lebensqualität einhergeht. Familien- und Zwillingsuntersuchungen sprechen dafür, dass mehr als 50% der Verhaltensvarianz durch genetische Faktoren zu erklären ist. In der vorliegenden kumulativen Habilitationsarbeit wurden verhaltensgenetische, molekularbiologische, humangenetische und funktionell bildgebende Untersuchungstechniken kombiniert, um ein erweitertes Verständnis der Neurobiologie der Alkoholabhängigkeit zu erzielen. In einer Serie tierexperimenteller Arbeiten konnte u.a. nachgewiesen werden, dass das Gen für das Multiple PDZ Domänen Protein Mpdz ein Kandidatengen des Alkoholentzugs, Barbituratentzugs und der neuronalen Exzitabilität darstellt. In zwei weiteren Untersuchungen wurden Kandidatengene der Alkoholpräferenz untersucht. Hier konnte mit dem Syntaxin binding protein 1 (Stxbp1) ein Kandidatengen der Alkoholpräferenz bestätigt werden. Humangenetische Untersuchungen sprechen dafür, dass molekulare Varianten in der Alpha2 Untereinheit des GABAA Rezeptors zu einem erhöhten Risiko der Entwicklung einer Alkoholabhängigkeit beim Menschen beitragen. Mit einer 18F-Fluorodesoxyglucose Untersuchung konnte nachgewiesen werden, dass Alkohol in vivo das mesolimbische Rewardsystem stimuliert, diese Stimulation jedoch nicht durch Tiagabin, einem GABA-Transporterinhibitor, hemmbar ist. Zusammengefasst sprechen die Untersuchungen dafür, dass molekulare Varianten synaptischer Proteine zu einer veränderten Alkoholempfindlichkeit und dem Risiko zur Entwicklung einer Alkoholabhängigkeit beitragen.
Resumo:
In dieser Arbeit werden neue Rylenimide und Anwendungsmöglichkeiten für diese Farbstoffklasse beschrieben, die sich durch hohe Photostabilitäten und hohe Fluoreszenzquantenausbeute auszeichnet. Ziel dieser Arbeit war es, durch systematische Wahl der Substituenten in den Imidstrukturen und/oder den bay-Regionen von Rylendiimidfarbstoffen vollkommen neue Produkteigenschaften zu verwirklichen, Reaktionen bzw. Anwendungen zu ermöglichen und den Aufbau von komplexeren Chromophorarchitekturen zu gestatten. Das Strukturmotiv des Terrylendiimids nahm dabei die zentrale Rolle ein. Die Arbeit wurde in vier Kapitel aufgeteilt. Das Ziel des ersten Kapitels war es, wasserlösliche Terrylendiimide zur Untersuchung von biologischen Proben im Wellenlängenbereich über 600 nm einzusetzen. Ein wasserlösliches Terrylendiimid erwies sich dabei als deutlich photostabiler als zwei weitverbreitete Fluoreszenzfarbstoffe. Eine erste Proteinmarkierung mit monofunktionellem Farbstoff wurde an Proteinmolekülen erfolgreich durchgeführt. Durch gezielte Modifikationen konnten zwei Terrylendiimide hergestellt werden, die sich noch deutlich besser zum Abbilden von Zellstrukturen eignen. In dem zweiten Kapitel spielte die Löslichkeit von Rylendiimiden in organischen Lösungsmitteln eine zentrale Rolle. Es wurde eine Rylendiimidserie hergestellt, deren löslichkeitssteigernde Gruppen eine Organisation der Moleküle in ausgedehnten Stapelstrukturen nicht verhindern. Mit dieser Serie konnte das flüssigkristalline Verhalten und die Selbstorganisation in der Rylendiimidreihe untersucht werden. Aufbauend auf diesen Ergebnissen wurde die Selbstorganisation der Diimide in Donor-Akzeptor Gemischen untersucht. In STM-Experimenten konnten für alle drei Diimide selbstorganisierte Monoschichten mit dem Rastertunnelmikroskop mit molekularer Auflösung abgebildet werden. Darüber hinaus wurden in diesem Kapitel die ersten organischen Feldeffekttransistoren (OFET) auf der Basis des synthetisierten Terrylendiimids beschrieben. Im Rahmen eines Projektes in dem die elektronische Energieübertragung in Donor-Akzeptor-Diaden mit Hilfe von Einzelmolekülspektroskopie untersucht wird, wurde eine Perylendiimid-Terrylediimid Diade hergestellt. Die geringere Photostabilität des Donors ermöglichte zeitaufgelöste Einzelmolekül-messungen der Akzeptoremission mit und ohne Energietransfer vom Donor auf den Akzeptor. Durch diese Messungen konnten die Zeitkonstanten des Energietransfers für einzelne Diaden ermittelt werden. Ein weiterer Chromophor aus diesem Donor-Akzeptor-Paar soll die Möglichkeit eröffnen, den Energiefluß im Molekül gezielt zu manipulieren. Dazu wurde ein Donorchromophor mit zwei Akzeptoren in einem Multichromophor kombiniert. Im Rahmen der Synthesen dieser Arbeit wurden Terrylendiimide hergestellt, die in einer Imidstruktur eine Halogenfunktion trugen. Diese waren wichtige Synthesebausteine zum Aufbau von komplexen Chromophorarchitekturen. Ziel eines weiteren Kapitels war es, ein Terrylendiimid herzustellen, das als Sensibilisatorfarbstoff gemeinsam mit dem Haupt-Antennenkomplex von höheren Pflanzen LHCII in einer photoelektrochemischen Farbstoff-Solarzelle integriert werden konnte. Das hergestellte Terrylendiimid mit Carbonsäuregruppe eignete sich für Farbstoffsolarzellen auf Zinndioxidbasis.
Resumo:
In dieser Dissertation wurden die Methoden Homologiemodellierung und Molekulardynamik genutzt, um die Struktur und das Verhalten von Proteinen in Lösung zu beschreiben. Mit Hilfe der Röntgenkleinwinkelstreuung wurden die mit den Computermethoden erzeugten Vorhersagen verifiziert. Für das alpha-Hämolysin, ein Toxin von Staphylococcus aureus, das eine heptamere Pore formen kann, wurde erstmalig die monomere Struktur des Protein in Lösung beschrieben. Homologiemodellierung auf Basis verwandter Proteine, deren monomere Struktur bekannt war, wurde verwendet, um die monomere Struktur des Toxins vorherzusagen. Flexibilität von Strukturelementen in einer Molekulardynamiksimulation konnte mit der Funktionalität des Proteines korreliert werden: Intrinsische Flexibilität versetzt das Protein in die Lage den Konformationswechsel zur Pore nach Assemblierung zu vollziehen. Röntgenkleinwinkelstreuung bewies die Unterschiede der monomeren Struktur zu den Strukturen der verwandten Proteine und belegt den eigenen Vorschlag zur Struktur. Überdies konnten Arbeiten an einer Mutante, die in einer sogenannten Präporenkonformation arretiert und nicht in der Lage ist eine Pore zu formen, zeigen, dass dieser Übergangszustand mit der Rotationsachse senkrecht zur Membran gelagert ist. Eine geometrische Analyse beweist, dass es sterisch möglich ist ausgehend von dieser Konformation die Konformation der Pore zu erreichen. Eine energetische und kinetische Analyse dieses Konformationswechsels steht noch aus. Ein weiterer Teil der Arbeit befasst sich mit den Konformationswechseln von Hämocyaninen. Diese wurden experimentell mittels Röntgenkleinwinkelstreuung verfolgt. Konformationswechsel im Zusammenhang mit der Oxygenierung konnten für die 24meren Hämocyanine von Eurypelma californicum und Pandinus imperator beschrieben werden. Für eine Reihe von Hämocyaninen ist nachgewiesen, dass sie unter Einfluss des Agenz SDS Tyrosinaseaktivität entfalten können. Der Konformationswechsel der Hämocyanine von E. californicum und P. imperator bei der Aktivierung zur Tyrosinase mittels SDS wurde experimentell bestätigt und die Stellung der Dodekamere der Hämocyanine als wesentlich bei der Aktivierung festgestellt. Im Zusammenhang mit anderen Arbeiten gilt damit die Relaxierung der Struktur unter SDS-Einfluss und der sterische Einfluss auf die verbindenden Untereinheiten b & c als wahrscheinliche Ursache für die Aktivierung zur Tyrosinase. Eigene Software zum sogenannten rigid body-Modellierung auf der Basis von Röntgenkleinwinkelstreudaten wurde erstellt, um die Streudaten des hexameren Hämocyanins von Palinurus elephas und Palinurus argus unter Einfluss der Effektoren Urat und Koffein strukturell zu interpretieren. Die Software ist die erste Implementierung eines Monte Carlo-Algorithmus zum rigid body-Modelling. Sie beherrscht zwei Varianten des Algorithmus: In Verbindung mit simulated annealing können wahrscheinliche Konformationen ausgefiltert werden und in einer anschließenden systematischen Analyse kann eine Konformation geometrisch beschrieben werden. Andererseits ist ein weiterer, reiner Monte Carlo-Algorithmus in der Lage die Konformation als Dichteverteilung zu beschreiben.
Resumo:
Membrane proteins play a major role in every living cell. They are the key factors in the cell’s metabolism and in other functions, for example in cell-cell interaction, signal transduction, and transport of ions and nutrients. Cytochrome c oxidase (CcO), as one of the membrane proteins of the respiratory chain, plays a significant role in the energy transformation of higher organisms. CcO is a multi centered heme protein, utilizing redox energy to actively transport protons across the mitochondrial membrane. One aim of this dissertation is to investigate single steps in the mechanism of the ion transfer process coupled to electron transfer, which are not fully understood. The protein-tethered bilayer lipid membrane is a general approach to immobilize membrane proteins in an oriented fashion on a planar electrode embedded in a biomimetic membrane. This system enables the combination of electrochemical techniques with surface enhanced resonance Raman (SERRS), surface enhanced reflection absorption infrared (SEIRAS), and surface plasmon spectroscopy to study protein mediated electron and ion transport processes. The orientation of the enzymes within the surface confined architecture can be controlled by specific site-mutations, i.e. the insertion of a poly-histidine tag to different subunits of the enzyme. CcO can, thus, be oriented uniformly with its natural electron pathway entry pointing either towards or away from the electrode surface. The first orientation allows an ultra-fast direct electron transfer(ET) into the protein, not provided by conventional systems, which can be leveraged to study intrinsic charge transfer processes. The second orientation permits to study the interaction with its natural electron donor cytochrome c. Electrochemical and SERR measurements show conclusively that the redox site structure and the activity of the surface confined enzyme are preserved. Therefore, this biomimetic system offers a unique platform to study the kinetics of the ET processes in order to clarify mechanistic properties of the enzyme. Highly sensitive and ultra fast electrochemical techniques allow the separation of ET steps between all four redox centres including the determination of ET rates. Furthermore, proton transfer coupled to ET could be directly measured and discriminated from other ion transfer processes, revealing novel mechanistic information of the proton transfer mechanism of cytochrome c oxidase. In order to study the kinetics of the ET inside the protein, including the catalytic center, time resolved SEIRAS and SERRS measurements were performed to gain more insight into the structural and coordination changes of the heme environment. The electrical behaviour of tethered membrane systems and membrane intrinsic proteins as well as related charge transfer processes were simulated by solving the respective sets of differential equations, utilizing a software package called SPICE. This helps to understand charge transfer processes across membranes and to develop models that can help to elucidate mechanisms of complex enzymatic processes.
Resumo:
Liquids under the influence of external fields exhibit a wide range of intriguing phenomena that can be markedly different from the behaviour of a quiescent system. This work considers two different systems — a glassforming Yukawa system and a colloid-polymer mixture — by Molecular Dynamics (MD) computer simulations coupled to dissipative particle dynamics. The former consists of a 50-50 binary mixture of differently-sized, like-charged colloids interacting via a screened Coulomb (Yukawa) potential. Near the glass transition the influence of an external shear field is studied. In particular, the transition from elastic response to plastic flow is of interest. At first, this model is characterised in equilibrium. Upon decreasing temperature it exhibits the typical dynamics of glassforming liquids, i.e. the structural relaxation time τα grows strongly in a rather small temperature range. This is discussed with respect to the mode-coupling theory of the glass transition (MCT). For the simulation of bulk systems under shear, Lees-Edwards boundary conditions are applied. At constant shear rates γ˙ ≫ 1/τα the relevant time scale is given by 1/γ˙ and the system shows shear thinning behaviour. In order to understand the pronounced differences between a quiescent system and a system under shear, the response to a suddenly commencing or terminating shear flow is studied. After the switch-on of the shear field the shear stress shows an overshoot, marking the transition from elastic to plastic deformation, which is connected to a super-diffusive increase of the mean squared displacement. Since the average static structure only depends on the value of the shear stress, it does not discriminate between those two regimes. The distribution of local stresses, in contrast, becomes broader as soon as the system starts flowing. After a switch-off of the shear field, these additional fluctuations are responsible for the fast decay of stresses, which occurs on a time scale 1/γ˙ . The stress decay after a switch-off in the elastic regime, on the other hand, happens on the much larger time scale of structural relaxation τα. While stresses decrease to zero after a switch-off for temperatures above the glass transition, they decay to a finite value for lower temperatures. The obtained results are important for advancing new theoretical approaches in the framework of mode-coupling theory. Furthermore, they suggest new experimental investigations on colloidal systems. The colloid-polymer mixture is studied in the context of the behaviour near the critical point of phase separation. For the MD simulations a new effective model with soft interaction potentials is introduced and its phase diagram is presented. Here, mainly the equilibrium properties of this model are characterised. While the self-diffusion constants of colloids and polymers do not change strongly when the critical point is approached, critical slowing down of interdiffusion is observed. The order parameter fluctuations can be determined through the long-wavelength limit of static structure factors. For this strongly asymmetric mixture it is shown how the relevant structure factor can be extracted by a diagonalisation of a matrix that contains the partial static structure factors. By presenting first results of this model under shear it is demonstrated that it is suitable for non-equilibrium simulations as well.
Resumo:
Molecular imaging technologies as Positron Emission Tomography (PET) are playing a key role in drug discovery, development and delivery due to the possibility to quantify e.g. the binding potential in vivo, non-invasively and repetitively. In this context, it provides a significant advance in the understanding of many CNS disorders and conditions. The serotonergic receptor system is involved in a number of important physiological processes and diseases such as depression, schizophrenia, Alzheimer’s disease, sleep or sexual behaviour. Especially, the 5-HT2A and the 5-HT1A receptor subtypes are in the focus of fundamental and clinical research due to the fact that many psychotic drugs interact with these neuronal transmembrane receptors. This work describes the successful development, as well as in vitro and in vivo evaluation of 5-HT2A and 5-HT1A selective antagonistic PET-radiotracers. The major achievements obtained in this thesis are: 1. the development and in vitro evaluation of several 5-HT2A antagonistic compounds, namely MH.MZ (Ki = 9.0 nM), (R)-MH.MZ (Ki = 0.72 nM) and MA-1 (Ki = 3.0 nM). 2. the 18F-labeling procedure of these compounds and their optimization, whereby radiochemical yields > 35 % in high specific activities (> 15 GBq/µmol) could be observed. Synthesis time inclusive secondary synthon synthesis, the radioactive labeling procedure, separation and final formulation took no longer than 120 min and provided the tracer in high radiochemical purity. 3. the in vivo µPET evaluation of [18F]MH.MZ and (R)-[18F]MH.MZ resulting in promising imaging agents of the 5-HT2A receptor status; from which (R)-[18F]MH.MZ seems to be the most promising ligand. 4. the determination of the influence of P-gp on the brain biodistribution of [18F]MH.MZ showing a strong P-gp dependency but no regional alteration. 5. the four-step radiosynthesis and evaluation of [18F]MDL 100907 resulting in another high affine tracer, which is, however, limited due to its low radiochemical yield. 6. the development and evaluation of 3 novel possible 5-HT2A imaging agents combining structural elements of altanserin, MDL 100907 and SR 46349B demonstrating different binding modes of these compounds. 7. the development, the labeling and in vitro evaluation of the novel 5-HT1A antagonistic tracer [18F]AH1.MZ (Ki = 4.2 nM).
Resumo:
In dieser Arbeit werden Strukturen beschrieben, die mit Polymeren auf Oberflächen erzeugt wurden. Die Anwendungen reichen von PMMA und PNIPAM Polymerbürsten, über die Restrukturierung von Polystyrol durch Lösemittel bis zu 3D-Strukturen, die aus PAH/ PSS Polyelektrolytmultischichten bestehen. Im ersten Teil werden Polymethylmethacrylat (PMMA) Bürsten in der ionischen Flüssigkeit 1-Butyl-3-Methylimidazolium Hexafluorophospat ([Bmim][PF6]) durch kontrollierte radikalische Polymerisation (ATRP) hergestellt. Kinetische Untersuchungen zeigten ein lineares und dichtes Bürstenwachstum mit einer Wachstumsrate von 4600 g/mol pro nm. Die durchschnittliche Pfropfdichte betrug 0.36 µmol/m2. Als Anwendung wurden Mikrotropfen bestehend aus der ionischen Flüssigkeit, Dimethylformamid und dem ATRP-Katalysator benutzt, um in einer definierten Geometrie Polymerbürsten auf Silizium aufzubringen. Auf diese Weise lässt sich eine bis zu 13 nm dicke Beschichtung erzeugen. Dieses Konzept ist durch die Verdampfung des Monomers Methylmethacrylat (MMA) limitiert. Aus einem 1 µl großen Tropfen aus ionischer Flüssigkeit und MMA (1:1) verdampft MMA innerhalb von 100 s. Daher wurde das Monomer sequentiell zugegeben. Der zweite Teil konzentriert sich auf die Strukturierung von Oberflächen mit Hilfe einer neuen Methode: Tintendruck. Ein piezoelektrisch betriebenes „Drop-on-Demand“ Drucksystem wurde verwendet, um Polystyrol mit 0,4 nl Tropfen aus Toluol zu strukturieren. Die auf diese Art und Weise gebildeten Mikrokrater können Anwendung als Mikrolinsen finden. Die Brennweite der Mikrolinsen kann über die Anzahl an Tropfen, die für die Strukturierung verwendet werden, eingestellt werden. Theoretisch und experimentell wurde die Brennweite im Bereich von 4,5 mm bis 0,21 mm ermittelt. Der zweite Strukturierungsprozess nutzt die Polyelektrolyte Polyvinylamin-Hydrochlorid (PAH) und Polystyrolsulfonat (PSS), um 3D-Strukturen wie z.B. Linien, Schachbretter, Ringe, Stapel mit einer Schicht für Schicht Methode herzustellen. Die Schichtdicke für eine Doppelschicht (DS) liegt im Bereich von 0.6 bis 1.1 nm, wenn NaCl als Elektrolyt mit einer Konzentration von 0,5 mol/l eingesetzt wird. Die Breite der Strukturen beträgt im Mittel 230 µm. Der Prozess wurde erweitert, um Nanomechanische Cantilever Sensoren (NCS) zu beschichten. Auf einem Array bestehend aus acht Cantilevern wurden je zwei Cantilever mit fünf Doppelschichten PAH/ PSS und je zwei Cantilever mit zehn Doppelschichten PAH/ PSS schnell und reproduzierbar beschichtet. Die Massenänderung für die individuellen Cantilever war 0,55 ng für fünf Doppelschichten und 1,08 ng für zehn Doppelschichten. Der daraus resultierende Sensor wurde einer Umgebung mit definierter Luftfeuchtigkeit ausgesetzt. Die Cantilever verbiegen sich durch die Ausdehnung der Beschichtung, da Wasser in das Polymer diffundiert. Eine maximale Verbiegung von 442 nm bei 80% Luftfeuchtigkeit wurde für die mit zehn Doppelschichten beschichteten Cantilever gefunden. Dies entspricht einer Wasseraufnahme von 35%. Zusätzlich konnte aus den Verbiegungsdaten geschlossen werden, dass die Elastizität der Polyelektrolytmultischichten zunimmt, wenn das Polymer gequollen ist. Das thermische Verhalten in Wasser wurde im nächsten Teil an nanomechanischen Cantilever Sensoren, die mit Poly(N-isopropylacrylamid)bürsten (PNIPAM) und plasmapolymerisiertem N,N-Diethylacrylamid beschichtet waren, untersucht. Die Verbiegung des Cantilevers zeigte zwei Bereiche: Bei Temperaturen kleiner der niedrigsten kritischen Temperatur (LCST) ist die Verbiegung durch die Dehydration der Polymerschicht dominiert und bei Temperaturen größer der niedrigsten kritischen Temperatur (LCST) reagiert der Cantilever Sensor überwiegend auf Relaxationsprozesse innerhalb der kollabierten Polymerschicht. Es wurde gefunden, dass das Minimum in der differentiellen Verbiegung mit der niedrigsten kritischen Temperatur von 32°C und 44°C der ausgewählten Polymeren übereinstimmt. Im letzten Teil der Arbeit wurden µ-Reflektivitäts- und µ-GISAXS Experimente eingeführt als neue Methoden, um mikrostrukturierte Proben wie NCS oder PEM Linien mit Röntgenstreuung zu untersuchen. Die Dicke von jedem individuell mit PMMA Bürsten beschichtetem NCS ist im Bereich von 32,9 bis 35,2 nm, was mit Hilfe von µ-Reflektivitätsmessungen bestimmt wurde. Dieses Ergebnis kann mit abbildender Ellipsometrie als komplementäre Methode mit einer maximalen Abweichung von 7% bestätigt werden. Als zweites Beispiel wurde eine gedruckte Polyelektrolytmultischicht aus PAH/PSS untersucht. Die Herstellungsprozedur wurde so modifiziert, dass Goldnanopartikel in die Schichtstruktur eingebracht wurden. Durch Auswertung eines µ-GISAXS Experiments konnte der Einbau der Partikel identifiziert werden. Durch eine Anpassung mit einem Unified Fit Modell wurde herausgefunden, dass die Partikel nicht agglomeriert sind und von einer Polymermatrix umgeben sind.
Resumo:
The aim of the work was to study the correlation between the orientation and excited-state lifetimes of organic dyes close to dielectric interfaces. For this purpose, an experimental setup was designed and built, guiding the light through a prism in total internal reflection geometry. Fluorescence intensities and lifetimes for an ensemble of dye molecules were analyzed as a function of the excitation and detection polarizations. Working close to the total internal reflection angle, the differences between polarization combinations were enhanced. A classical electromagnetic model that assumes a chromophore as a couple of point-like electrical dipoles was developed. A numerical method to calculate the excitation and emission of dye molecules embedded in a multilayer system was implemented, by which full simulation of the time resolved fluorescence experiments was achieved. Free organic dyes and organic dyes covalently bound to polyelectrolyte chains were used. The polymer functionalization process avoided aggregation and provided control over the dyes position, within a few nanometers to the interface. Moreover, by varying the pH, the polymer chains could be deposited on different substrates with different conformations and the resulting fluorescence characteristics analyzed. Initially the fluorescence of organic dyes embedded in a polymer matrix was studied as a function of the distance between the fluorophores and the polymer-air interface. The non-radiative decay rate, vacuum decay rate and the relative angle between the excitation and emission dipoles of the chromophores could be determined. Different free organic dyes were deposited onto different dielectric spacers, as close as possible to the air-dielectric interface. Surprisingly, the fluorescence characteristics of dyes deposited onto polyelectrolyte layer were in good agreement with theoretical predictions of dyes in a polymer matrix, even when the layer was only 2 nm thick. When functionalized chains were deposited at low pH, on top of a polyelectrolyte spacer, the fluorescence had the characteristics of emitters embedded in a polymer matrix as well. Surface deposition at high pH showed an intermediate behaviour between emitters embedded in polymer and on top of the surface, in air. In general, for low pH values, the chains are deposited on a substrate in a train-like conformation. For high pH values, the chains are deposited in a loop-like conformation. As a consequence at low pH the functionalized polymer strongly interdigitates with the polyelectrolyte chains of the spacer, bringing most of the dyes inside the polymer. Thus, the fluorophores may experience the polymer as surrounding environment. On the other hand, for high pH values the dye-loaded chains adsorbed have a conformational arrangement of dense loops that extend away from the surface. Therefore many fluorophores experience the air as surrounding environment. Changing the spacer from polyelectrolyte to negatively charged silane produced contradictory results for lifetimes and intensities. The fluorescence intensities indicated the behaviour of emitters embedded in a polymer matrix, regardless of the pH value. On the other hand, for low pH values, the excited-state lifetimes showed that the emitters behaved as in air. For higher pH values, an intermediate behaviour between fluorophores located within and above of a dielectric film was observed. The poor agreement between theoretical and experimental data may be due to the simplified model utilized, by which the dipoles are assumed either in one side or in the other with respect to a geometrical air-dielectric interface. In the case when the dielectric film is constituted by the functionalized polymer chains themselves, reality is more complex and a different model may apply. Nevertheless, possible applications of the technique arise from a qualitative analysis.
Resumo:
Aromatische Amide mit p-Verknüpfung bilden die wohl steifste und härteste Klasse organischer Moleküle. Ihre Oligomere und Polymere sind Materialien mit extremer Stabilität und chemischer Robustheit. Die vorliegende Arbeit beschreibt die Synthese wohldefinierter Oligo-(p-benzamid)e (OPBA) bis zum Hepta-(p-benzamid), deren Kristallstruktur und thermisches Verhalten eingehend untersucht werden. Ihre besondere Steifigkeit wird im Folgenden genutzt, um Stab-Knäuel-Copolymere mit wohldefiniertem OPBA-Stab-Block herzustellen. Das Aggregationsverhalten dieser Copolymere wird näher beschrieben und die Aggregate mittels Rasterkraftmikroskopie (RKM) visualisiert und charakterisiert. Ein Schwerpunkt der durchgeführten Forschung befasst sich mit dem Einflu"s chemischer Variationen von Knäuel- und Stabblock auf die Aggregation. Ausgehend von PEG-OPBA-Copolymeren wird gezeigt, wie sich über kontrolliert radikalische Polymerisation responsive Triblöcke herstellen lassen. Das Verhalten dieser Triblöcke in wässriger Lösung wird eingehender untersucht und anhand von Lichstreu- und RKM-Untersuchungen ein Modell entwickelt, welches dieses Verhalten beschreibt. Neben den OPBA beschäftigt sich die Arbeit mit der Synthese wohldefinierter Oligo-p-phenylen-terephthalamide (OPTA). Der Aufbau PEG-basierter Stab-Knäuel-Copolymere mit monodispersem OPTA-Block wird beschrieben und ihre Aggregate mittels RKM dargestellt. Die Copolymere werden verwendet, um verbesserte Haftungseigenschaften an Twaron-Fasern gegenüber reinem PEG zu demonstrieren.