993 resultados para Covariant Plasmas
Resumo:
For magnetically confined plasmas in tokamaks, we have numerically investigated how Lagrangian chaos at the plasma edge affects the plasma confinement. Initially, we have considered the chaotic motion of particles in an equilibrium electric field with a monotonic radial profile perturbed by drift waves. We have showed that an effective transport barrier may be created at the plasma edge by modifying the electric field radial profile. In the second place, we have obtained escape patterns and magnetic footprints of chaotic magnetic field lines in the region near a tokamak wall with resonant modes due to the action of an ergodic magnetic limiter. For monotonic plasma current density profiles we have obtained distributions of field line connections to the wall and line escape channels with the same spatial pattern as the magnetic footprints on the tokamak walls. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
High-frequency extensions of magnetorotational instability driven by the Velikhov effect beyond the standard magnetohydrodynamic (MHD) regime are studied. The existence of the well-known Hall regime and a new electron inertia regime is demonstrated. The electron inertia regime is realized for a lesser plasma magnetization of rotating plasma than that in the Hall regime. It includes the subregime of nonmagnetized electrons. It is shown that, in contrast to the standard MHD regime and the Hall regime, magnetorotational instability in this subregime can be driven only at positive values of dln Omega/dlnr, where Omega is the plasma rotation frequency and r is the radial coordinate. The permittivity of rotating plasma beyond the standard MHD regime, including both the Hall regime and the electron inertia regime, is calculated.
Resumo:
We investigated drift-wave turbulence in the plasma edge of a small tokamak by considering solutions of the Hasegawa-Mima equation involving three interacting modes in Fourier space. The resulting low-dimensional dynamics presented periodic as well as chaotic evolution of the Fourier-mode amplitudes, and we performed the control of chaotic behaviour through the application of a fourth resonant wave of small amplitude.
Resumo:
We have investigated plasma turbulence at the edge of a tokamak plasma using data from electrostatic potential fluctuations measured in the Brazilian tokamak TCABR. Recurrence quantification analysis has been used to provide diagnostics of the deterministic content of the series. We have focused our analysis on the radial dependence of potential fluctuations and their characterization by recurrence-based diagnostics. Our main result is that the deterministic content of the experimental signals is most pronounced at the external part of the plasma column just before the plasma radius. Since the chaoticity of the signals follows the same trend, we have concluded that the electrostatic plasma turbulence at the tokamak plasma edge can be partially explained by means of a deterministic nonlinear system. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Anisotropy of thermal stresses in confined dusty plasmas is considered. It is shown that in a multi-component low-temperature plasma containing electrons, ions and dust, the complicated dependence of the ion viscosity on ion temperature gradients leads to a plasma equilibrium state with anisotropic pressure. This pressure anisotropy can be of the order of the ion pressure in some limiting cases, in which the ion Larmor radius or the ion mean free path are of the order of the characteristic length of the plasma nonuniformity. For a sufficiently large dust number density, they contribute to the plasma pressure anisotropy and to its spatial dependence. Currently, it is not yet clear whether this equilibrium state is stable or not. Under these conditions, some convective plasma flows can arise in confinement devices. Therefore, this question needs special consideration.
Resumo:
Recently, in [3] Horava and Melby-Thompson proposed a nonrelativistic gravity theory with extended gauge symmetry that is free of the spin-0 graviton. We propose a minimal substitution recipe to implement this extended gauge symmetry which reproduces the results obtained by them. Our prescription has the advantage of being manifestly gauge invariant and immediately generalizable to other fields, like matter. We briefly discuss the coupling of gravity with scalar and vector fields found by our method. We show also that the extended gauge invariance in gravity does not force the value of. to be lambda = 1 as claimed in [3]. However, the spin-0 graviton is eliminated even for general lambda.
Resumo:
Radial transport in the tokamap, which has been proposed as a simple model for the motion in a stochastic plasma, is investigated. A theory for previous numerical findings is presented. The new results are stimulated by the fact that the radial diffusion coefficients is space-dependent. The space-dependence of the transport coefficient has several interesting effects which have not been elucidated so far. Among the new findings are the analytical predictions for the scaling of the mean radial displacement with time and the relation between the Fokker-Planck diffusion coefficient and the diffusion coefficient from the mean square displacement. The applicability to other systems is also discussed. (c) 2009 WILEY-VCH GmbH & Co. KGaA, Weinheim
Resumo:
Linear covariant gauges, such as Feynman gauge, are very useful in perturbative calculations. Their non-perturbative formulation is, however, highly non-trivial. In particular, it is a challenge to define linear covariant gauges on a lattice. We consider a class of gauges in lattice gauge theory that coincides with the perturbative definition of linear covariant gauges in the formal continuum limit. The corresponding gauge-fixing procedure is described and analyzed in detail, with an application to the pure SU(2) case. In addition, results for the gluon propagator in the two-dimensional case are given. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This thesis discusses an experimental technique for investigating electron temperature control by Rydberg atoms in ultra-cold plasmas. The objective we set ourselves was twofold. Firstly, we sought to gain an insight into the processes whereby the creation of Rydberg atoms within the plasma lengthens the lifetime of the plasma. To this end, we created the plasma using a Littman dye laser and subsequently, at a variable time delay, we excited neutral atoms in the plasma to specific Rydberg states using a narrow bandwidth pulsed dye laser. Secondly, we employed radio-frequency (rf) electric fields to excite electron oscillations within the plasma in order to infer such information as plasma density and electron temperature. Although we found that the introduction of high angular momentum Rydberg states did lengthen the plasma lifetime we were not able to differentiate between the temperature moderation effect due to the Rydberg atoms cooling the plasma, and the binding effect due to an increased positive space charge within the plasma.
Resumo:
No presente trabalho, estudamos a absorção e amplificação de ondas eletromagnéticas que se propagam em plasmas com densidade e temperatura fracamente inomogêneas, imersos em um campo magnético também inomogêneo, tendo como base a teoria cinética, dentro do contexto da aproximação local. Esse estudo se dá efetivamente a partir da obtenção do tensor dielétrico do plasma, que deve ser empregado na relação de dispersão. Iniciamos com uma revisão dos conceitos básicos sobre plasmas homogêneos e inomogêneos. Os fundamentos da teoria cinética também foram abordados. Apresentamos uma revisão de trabalhos anteriores que enfocam o mesmo tema, embora descrevendo separadamente os dois tipos de inomogeneidades. A partir desses trabalhos, obtivemos um tensor dielétrico geral, que descreve de forma simultânea as inomogeneidades do campo magnético de equilíbrio e da função distribuição de equilíbrio.Tal tensor foi obtido a partir de um sólido desenvolvimento teórico, que garante a correta descrição da troca de energia entre as ondas e as partículas do plasma. Abordamos os aspectos gerais das instabilidades de deriva, direcionando o estudo à faixa de frequência das ondas híbridas inferiores, e às instabilidades LHDI e MTSI (IWI). Utilizamos perfis lineares de inomogeneidades de campo magnêtico ambiente e densidade para modelar a região da magnetosfera conhecida como neutral sheet. Particularizamos o tensor dielétrico para o estudo específico das instabilidades LHDI e MTSI (IWI), para o tipo de perfil citado acima. Apresentamos uma nova rela»c~ao de dispers~ao para plasmas inomogêneos, que incorpora explicitamente as derivadas espaciais do tensor dielétrico do plasma. Usamos o tensor que unifica os tratamentos das inomogeneidades do campo e densidade nessa relação de dispersão, e obtivemos uma descrição unificada das instabilidades LHDI e MTSI (IWI).
Resumo:
The standard kinetic theory for a nonrelativistic diluted gas is generalized in the spirit of the nonextensive statistic distribution introduced by Tsallis. The new formalism depends on an arbitrary q parameter measuring the degree of nonextensivity. In the limit q = 1, the extensive Maxwell-Boltzmann theory is recovered. Starting from a purely kinetic deduction of the velocity q-distribution function, the Boltzmann H-teorem is generalized for including the possibility of nonextensive out of equilibrium effects. Based on this investigation, it is proved that Tsallis' distribution is the necessary and sufficient condition defining a thermodynamic equilibrium state in the nonextensive context. This result follows naturally from the generalized transport equation and also from the extended H-theorem. Two physical applications of the nonextensive effects have been considered. Closed analytic expressions were obtained for the Doppler broadening of spectral lines from an excited gas, as well as, for the dispersion relations describing the eletrostatic oscillations in a diluted electronic plasma. In the later case, a comparison with the experimental results strongly suggests a Tsallis distribution with the q parameter smaller than unity. A complementary study is related to the thermodynamic behavior of a relativistic imperfect simple fluid. Using nonequilibrium thermodynamics, we show how the basic primary variables, namely: the energy momentum tensor, the particle and entropy fluxes depend on the several dissipative processes present in the fluid. The temperature variation law for this moving imperfect fluid is also obtained, and the Eckart and Landau-Lifshitz formulations are recovered as particular cases