997 resultados para Architecture, Italian.
Resumo:
Real-Time services are traditionally supported on circuit switched network. However, there is a need to port these services on packet switched network. Architecture for audio conferencing application over the Internet in the light of ITU-T H.323 recommendations is considered. In a conference, considering packets only from a set of selected clients can reduce speech quality degradation because mixing packets from all clients can lead to lack of speech clarity. A distributed algorithm and architecture for selecting clients for mixing is suggested here based on a new quantifier of the voice activity called “Loudness Number” (LN). The proposed system distributes the computation load and reduces the load on client terminals. The highlights of this architecture are scalability, bandwidth saving and speech quality enhancement. Client selection for playing out tries to mimic a physical conference where the most vocal participants attract more attention. The contributions of the paper are expected to aid H.323 recommendations implementations for Multipoint Processors (MP). A working prototype based on the proposed architecture is already functional.
Resumo:
The highest levels of security can be achieved through the use of more than one type of cryptographic algorithm for each security function. In this paper, the REDEFINE polymorphic architecture is presented as an architecture framework that can optimally support a varied set of crypto algorithms without losing high performance. The presented solution is capable of accelerating the advanced encryption standard (AES) and elliptic curve cryptography (ECC) cryptographic protocols, while still supporting different flavors of these algorithms as well as different underlying finite field sizes. The compelling feature of this cryptosystem is the ability to provide acceleration support for new field sizes as well as new (possibly proprietary) cryptographic algorithms decided upon after the cryptosystem is deployed.
Resumo:
Electrostatic self-assembly of colloidal and nanoparticles has attracted a lot of attention in recent years, since it offers the possibility of producing novel crystalline structures that have the potential to be used as advanced materials for photonic and other applications. The stoichiometry of these crystals is not constrained by charge neutrality of the two types of particles due to the presence of counterions, and hence a variety of three-dimensional structures have been observed depending on the relative sizes of the particles and their charge. Here we report structural polymorphism of two-dimensional crystals of oppositely charged linear macroions, namely DNA and self-assembled cylindrical micelles of cationic amphiphiles. Our system differs from those studied earlier in terms of the presence of a strongly binding counterion that competes with DNA to bind to the micelle. The presence of these counterions leads to novel structures of these crystals, such as a square lattice and a root 3 x root 3 superlattice of an underlying hexagonal lattice, determined from a detailed analysis of the small-angle diffraction data. These lower-dimensional equilibrium systems can play an important role in developing a deeper theoretical understanding of the stability of crystals of oppositely charged particles. Further, it should be possible to use the same design principles to fabricate structures on a longer length-scale by an appropriate choice of the two macroions.
Resumo:
Today's SoCs are complex designs with multiple embedded processors, memory subsystems, and application specific peripherals. The memory architecture of embedded SoCs strongly influences the power and performance of the entire system. Further, the memory subsystem constitutes a major part (typically up to 70%) of the silicon area for the current day SoC. In this article, we address the on-chip memory architecture exploration for DSP processors which are organized as multiple memory banks, where banks can be single/dual ported with non-uniform bank sizes. In this paper we propose two different methods for physical memory architecture exploration and identify the strengths and applicability of these methods in a systematic way. Both methods address the memory architecture exploration for a given target application by considering the application's data access characteristics and generates a set of Pareto-optimal design points that are interesting from a power, performance and VLSI area perspective. To the best of our knowledge, this is the first comprehensive work on memory space exploration at physical memory level that integrates data layout and memory exploration to address the system objectives from both hardware design and application software development perspective. Further we propose an automatic framework that explores the design space identifying 100's of Pareto-optimal design points within a few hours of running on a standard desktop configuration.
Resumo:
High performance video standards use prediction techniques to achieve high picture quality at low bit rates. The type of prediction decides the bit rates and the image quality. Intra Prediction achieves high video quality with significant reduction in bit rate. This paper presents novel area optimized architecture for Intra prediction of H.264 decoding at HDTV resolution. The architecture has been validated on a Xilinx Virtex-5 FPGA based platform and achieved a frame rate of 64 fps. The architecture is based on multi-level memory hierarchy to reduce latency and ensure optimum resources utilization. It removes redundancy by reusing same functional blocks across different modes. The proposed architecture uses only 13% of the total LUTs available on the Xilinx FPGA XC5VLX50T.
Resumo:
Advances in technology have increased the number of cores and size of caches present on chip multicore platforms(CMPs). As a result, leakage power consumption of on-chip caches has already become a major power consuming component of the memory subsystem. We propose to reduce leakage power consumption in static nonuniform cache architecture(SNUCA) on a tiled CMP by dynamically varying the number of cache slices used and switching off unused cache slices. A cache slice in a tile includes all cache banks present in that tile. Switched-off cache slices are remapped considering the communication costs to reduce cache usage with minimal impact on execution time. This saves leakage power consumption in switched-off L2 cache slices. On an average, there map policy achieves 41% and 49% higher EDP savings compared to static and dynamic NUCA (DNUCA) cache policies on a scalable tiled CMP, respectively.
Resumo:
We propose a power scalable digital base band for a low-IF receiver for IEEE 802.15.4-2006. The digital section's sampling frequency and bit width are used as knobs to reduce the power under favorable signal and interference scenarios, thus recovering the design margins introduced to handle worst case conditions. We propose tuning of these knobs based on measurements of Signal and the interference levels. We show that in a 0.13u CMOS technology, for an adaptive digital base band section of the receiver designed to meet the 802.15.4 standard specification, power saving can be up to nearly 85% (0.49mW against 3.3mW) in favorable interference and signal conditions.
Resumo:
Video decoders used in emerging applications need to be flexible to handle a large variety of video formats and deliver scalable performance to handle wide variations in workloads. In this paper we propose a unified software and hardware architecture for video decoding to achieve scalable performance with flexibility. The light weight processor tiles and the reconfigurable hardware tiles in our architecture enable software and hardware implementations to co-exist, while a programmable interconnect enables dynamic interconnection of the tiles. Our process network oriented compilation flow achieves realization agnostic application partitioning and enables seamless migration across uniprocessor, multi-processor, semi hardware and full hardware implementations of a video decoder. An application quality of service aware scheduler monitors and controls the operation of the entire system. We prove the concept through a prototype of the architecture on an off-the-shelf FPGA. The FPGA prototype shows a scaling in performance from QCIF to 1080p resolutions in four discrete steps. We also demonstrate that the reconfiguration time is short enough to allow migration from one configuration to the other without any frame loss.
Resumo:
A novel composite architecture consisting of a periodic arrangement of closely-spaced spheres of a stiff material embedded in a soft matrix is proposed for extremely high damping and shock absorption capacity. Efficacy of this architecture is demonstrated by compression loading a composite, where multiple steel balls were stacked upon each other in a polydimethylsiloxane (PDMS) matrix, at a low strain-rate of 0.05 s(-1) and a very high strain-rate of >2400 s(-1). The balls slide over each other upon loading, and revert to their original position when the load is removed. Because of imposition of additional strains into the matrix via this reversible, constrained movement of the balls, the composite absorbs significantly larger energy and endures much lesser permanent damage than the monolithic PDMS during both quasi-static and impact loadings. During the impact loading, energy absorbed per unit weight for the composite was, 8 times larger than the monolithic PDMS.
Resumo:
In this paper we present the design of ``e-SURAKSHAK,'' a novel cyber-physical health care management system of Wireless Embedded Internet Devices (WEIDs) that sense vital health parameters. The system is capable of sensing body temperature, heart rate, oxygen saturation level and also allows noninvasive blood pressure (NIBP) measurement. End to end internet connectivity is provided by using 6LoWPAN based wireless network that uses the 802.15.4 radio. A service oriented architecture (SOA) 1] is implemented to extract meaningful information and present it in an easy-to-understand form to the end-user instead of raw data made available by sensors. A central electronic database and health care management software are developed. Vital health parameters are measured and stored periodically in the database. Further, support for real-time measurement of health parameters is provided through a web based GUI. The system has been implemented completely and demonstrated with multiple users and multiple WEIDs.
Resumo:
Gene expression is the most fundamental biological process, which is essential for phenotypic variation. It is regulated by various external (environment and evolution) and internal (genetic) factors. The level of gene expression depends on promoter architecture, along with other external factors. Presence of sequence motifs, such as transcription factor binding sites (TFBSs) and TATA-box, or DNA methylation in vertebrates has been implicated in the regulation of expression of some genes in eukaryotes, but a large number of genes lack these sequences. On the other hand, several experimental and computational studies have shown that promoter sequences possess some special structural properties, such as low stability, less bendability, low nucleosome occupancy, and more curvature, which are prevalent across all organisms. These structural features may play role in transcription initiation and regulation of gene expression. We have studied the relationship between the structural features of promoter DNA, promoter directionality and gene expression variability in S. cerevisiae. This relationship has been analyzed for seven different measures of gene expression variability, along with two different regulatory effect measures. We find that a few of the variability measures of gene expression are linked to DNA structural properties, nucleosome occupancy, TATA-box presence, and bidirectionality of promoter regions. Interestingly, gene responsiveness is most intimately correlated with DNA structural features and promoter architecture.
Resumo:
This paper presents a Radix-4(3) based FFT architecture suitable for OFDM based WLAN applications. The radix-4(3) parallel unrolled architecture presented here, uses a radix-4 butterfly unit which takes all four inputs in parallel and can selectively produce one out of the four outputs. A 64 point FFT processor based on the proposed architecture has been implemented in UMC 130nm 1P8M CMOS process with a maximum clock frequency of 100 MHz and area of 0.83mm(2). The proposed processor provides a throughput of four times the clock rate and can finish one 64 point FFT computation in 16 clock cycles. For IEEE 802.11a/g WLAN, the processor needs to be operated at a clock rate of 5 MHz with a power consumption of 2.27 mW which is 27% less than the previously reported low power implementations.